满分5 > 高中数学试题 >

已知函数f(x)=,a∈R (I)求f(x)的极值; (II)若lnx-kx<0...

已知函数f(x)=manfen5.com 满分网,a∈R
(I)求f(x)的极值;
(II)若lnx-kx<0在(0,+∞)上恒成立,求k的取值范围;
(III)已知x1>0,x2>0,且x1+x2<e,求证:x1+x2>x1x2
(1)先对函数f(x)进行求导,令导函数等于0求出x的值,再根据导函数的正负判断函数的单调性,进而确定极值. (2)将问题转化为在(0,+∞)上恒成立的问题,然后求函数的最大值,令k大于这个最大值即可. (3)先判断函数f(x)在(0,e)上的单调性,进而得到x1,x2的关系得证. 【解析】 (Ⅰ)∵,令f/(x)=0得x=ea 当x∈(0,ea),f/(x)>0,f(x)为增函数; 当x∈(ea,+∞),f/(x)<0,f(x)为减函数, 可知f(x)有极大值为f(ea)=e-a (Ⅱ)欲使lnx-kx<0在(0,+∞)上恒成立,只需在(0,+∞)上恒成立, 设由(Ⅰ)知,,∴ (Ⅲ)∵e>x1+x2>x1>0,由上可知在(0,e)上单调递增, ∴①, 同理② 两式相加得ln(x1+x2)>lnx1+lnx2=lnx1x2 ∴x1+x2>x1x2
复制答案
考点分析:
相关试题推荐
某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(I)估计这次测试数学成绩的平均分;
(II)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取2个数,有放回地抽取了3次,记这3次抽取中,恰好是两个学生的数学成绩的次数为ξ,求ξ的分布列及数学期望Eξ.

manfen5.com 满分网 查看答案
建造一条防洪堤,其断面为等腰梯形,腰与底边成角为60°(如图),考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为manfen5.com 满分网平方米,为了使堤的上面与两侧面的水泥用料最省,则断面的外周长(梯形的上底线段BC与两腰长的和)要最小.
(1)求外周长的最小值,此时防洪堤高h为多少米?
(2)如防洪堤的高限制在manfen5.com 满分网的范围内,外周长最小为多少米?

manfen5.com 满分网 查看答案
如图,已知椭圆C:manfen5.com 满分网的长轴AB长为4,离心率manfen5.com 满分网,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连接AQ延长交直线l于点M,N为MB的中点.
(1)求椭圆C的方程;
(2)证明Q点在以AB为直径的圆O上;
(3)试判断直线QN与圆O的位置关系.

manfen5.com 满分网 查看答案
已知双曲线manfen5.com 满分网左右两焦点为F1,F2,P是右支上一点,PF2⊥F1F2,OH⊥PF1于H,manfen5.com 满分网
(1)当manfen5.com 满分网时,求双曲线的渐近线方程;
(2)求双曲线的离心率e的取值范围;
(3)当e取最大值时,过F1,F2,P的圆的截y轴的线段长为8,求该圆的方程.
查看答案
如图,已知正三棱柱ABC-A1B1C1的所有棱长都是2,D、E分别为CC1、A1B1的中点.
(1)求证C1E∥平面A1BD;
(2)求证AB1⊥平面A1BD;
(3)求三棱锥A1-C1DE的体积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.