满分5 > 高中数学试题 >

已知函数,数列{an}满足an=f(n)(n∈N+),且数列{an}是单调递增数...

已知函数manfen5.com 满分网,数列{an}满足an=f(n)(n∈N+),且数列{an}是单调递增数列,则实数a的取值范围是   
本题考查的是分段函数与数列的综合问题.解答时可以先根据题意写出数列通项公式的分段函数形式;然后由于数列是递增的即可获得两个条件即:对应等差数列通项n的系数大于零和a7>a6.由此即可获得解答. 【解析】 由题意知:数列{an}的通项公式为,, 由于数列是递增数列,∴,∴a<8; 又∵a7>a6,∴a2>28-3a,解得a>4或a<-7. 故a的取值范围是4<a<8. 故答案为:(4,8).
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+(a-3)x+a2-3a(a为常数).
(1)如果对任意x∈[1,2],f(x)>a2恒成立,求实数a的取值范围;
(2)设实数p,q,r满足:p,q,r中的某一个数恰好等于a,且另两个恰为方程f(x)=0的两实根,判断①p+q+r,②p2+q2+r2,③p3+q3+r3是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数g(a),并求g(a)的最小值;
(3)对于(2)中的g(a),设manfen5.com 满分网,数列{an}满足an+1=H(an)(n∈N*),且a1∈(0,1),试判断an+1与an的大小,并证明之.
查看答案
某隧道长2150m,通过隧道的车速不能超过20m/s.一列有55辆车身长都为10m的同一车型的车队(这种型号的车能行驶的最高速为40m/s)匀速通过该隧道,设车队的速度为xm/s,根据安全和车流的需要,当0<x≤10时,相邻两车之间保持20m的距离;当10<x≤20时,相邻两车之间保持manfen5.com 满分网m的距离.自第1辆车车头进入隧道至第55辆车尾离开隧道所用的时间为y(s).
(1)将y表示为x的函数;
(2)求车队通过隧道时间y的最小值及此时车队的速度.manfen5.com 满分网
查看答案
在O为坐标原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点.已知manfen5.com 满分网且点B的纵坐标大于零.
(1)求圆x2-6x+y2+2y=0关于直线OB对称的圆的方程;
(2)设直线l平行于直线AB且过点(0,a),问是否存在实数a,使得椭圆manfen5.com 满分网上有两个不同的点关于直线l对称,若不存在,请说明理由;若存在,请求出实数a的取值范围.
查看答案
在等差数列{an}中,a1=1,a5=9,在数列{bn}中,b1=2,且bn=2bn-1-1,(n≥2)
(1)求数列{an}和{bn}的通项公式;
(2)设manfen5.com 满分网,证明对∀n∈N*,Tn<6都成立.
查看答案
如图,A是单位圆与x轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),manfen5.com 满分网,四边形OAQP的面积为S.
(1)求manfen5.com 满分网的最大值及此时θ的值θ
(2)设点B的坐标为manfen5.com 满分网,∠AOB=α,在(1)的条件下求cos(α+θ).

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.