满分5 > 高中数学试题 >

如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,...

manfen5.com 满分网如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(Ⅰ)设E是DC的中点,求证:D1E∥平面A1BD;
(Ⅱ)求二面角A1-BD-C1的余弦值.
(1)由题意及图形所给的线段大小之间的关系,利用线线平行进而得到线面平行; (2)利用图形中两两垂直的线和题中所给的线段的大小,建立空间直角坐标系,利用向量的知识求出二面角的大小. 【解析】 (I)连接BE,则四边形DABE为正方形, ∴BE=AD=A1D1,且BE∥AD∥A1D1, ∴四边形A1D1EB为平行四边形,∴D1E∥A1B. ∵D1E⊄平面A1BD,A1B⊂平面A1BD, ∴D1E∥平面A1BD. (II)以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系, 不妨设DA=1,则D(0,0,0),A(1,0,0),B(1,1,0),C1(0,2,2),A1(1,0,2). ∴. 设为平面A1BD的一个法向量, 由得 取z=1,则 设为平面C1BD的一个法向量, 由得, 取z1=1,则 ∵.. 由于该二面角A1-BD-C1为锐角, 所以所求的二面角A1-BD-C1的余弦值为.
复制答案
考点分析:
相关试题推荐
设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+bx+c=0实根的个数(重根按一个计).
(I)求方程x2+bx+c=0有实根的概率;
(II)求ξ的分布列和数学期望;
(III)求在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根的概率.
查看答案
设数列{an}满足a1+3a2+32a3+…+3n-1an=manfen5.com 满分网,n∈N*
(1)求数列{an}的通项;
(2)设manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
已知函数y=loga(x-1)+1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中manfen5.com 满分网
最小值为    查看答案
与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是    查看答案
将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,那么BF的长度是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.