已知函数
,a为正常数.
(1)若f(x)=lnx+φ(x),且
,求函数f(x)的单调增区间;
(2)若g(x)=|lnx|+φ(x),且对任意x
1,x
2∈(0,2],x
1≠x
2,都有
,求a的取值范围.
考点分析:
相关试题推荐
已知数列{a
n}满足:
(n∈N
*,a∈R,a为常数),
数列{b
n}中,
.
(1)求a
1,a
2,a
3;
(2)证明:数列{b
n}为等差数列;
(3)求证:数列{b
n}中存在三项构成等比数列时,a为有理数.
查看答案
已知抛物线的顶点在坐标原点,对称轴为x轴,焦点F在直线m:y=
上,直线m与抛物线相交于A,B两点,P为抛物线上一动点(不同于A,B),直线PA,PB分别交该抛物线的准线l于点M,N.
(1)求抛物线方程;
(2)求证:以MN为直径的圆C经过焦点F,且当P为抛物线的顶点时,圆C与直线m相切.
查看答案
已知某种稀有矿石的价值y(单位:元)与其重量ω(单位:克)的平方成正比,且3克该种矿石的价值为54000元.
(1)写出y(单位:元)关于ω单位:克)的函数关系式;
(2)若把一块该种矿石切割成重量比为1:3的两块矿石,求价值损失的百分率;
(3)把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大.(注:价值损失的百分率=
×100%;在切割过程中的重量损耗忽略不计)
查看答案
已知函数
的图象如图所示,
直线
是其两条对称轴.
(1)求函数f(x)的解析式并写出函数的单调增区间;
(2)若f(α)=
且
,求f(α
)的值.
查看答案
如图,在直三棱柱ABC-A
1B
1C
1中,AB=AC,点D在边BC上,AD⊥C
1D.
(1)求证:AD⊥平面BCC
1B
1;
(2)如果点E是B
1C
1的中点,求证:A
1E∥平面ADC
1.
查看答案