满分5 > 高中数学试题 >

已知函数,a为正常数. (1)若f(x)=lnx+φ(x),且,求函数f(x)的...

已知函数manfen5.com 满分网,a为正常数.
(1)若f(x)=lnx+φ(x),且manfen5.com 满分网,求函数f(x)的单调增区间;
(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有manfen5.com 满分网,求a的取值范围.
(1)先对函数y=f(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可得到答案. (2)设h(x)=g(x)+x,依题意得出h(x)在(0,2]上是减函数.下面对x分类讨论:①当1≤x≤2时,②当0<x<1时,利用导数研究函数的单调性从及最值,即可求得求a的取值范围. 【解析】 (1),(2分) ∵,令f′(x)>0,得x>2,或, ∴函数f(x)的单调增区间为,(2,+∞).(6分) (2)∵, ∴, ∴,(8分) 设h(x)=g(x)+x,依题意,h(x)在(0,2]上是减函数. 当1≤x≤2时,,, 令h′(x)≤0,得:对x∈[1,2]恒成立, 设,则, ∵1≤x≤2,∴, ∴m(x)在[1,2]上递增,则当x=2时,m(x)有最大值为, ∴(12分) 当0<x<1时,,, 令h′(x)≤0,得:, 设,则, ∴t(x)在(0,1)上是增函数, ∴t(x)<t(1)=0, ∴a≥0,(15分)综上所述,(16分)
复制答案
考点分析:
相关试题推荐
已知数列{an}满足:manfen5.com 满分网(n∈N*,a∈R,a为常数),
数列{bn}中,manfen5.com 满分网
(1)求a1,a2,a3
(2)证明:数列{bn}为等差数列;
(3)求证:数列{bn}中存在三项构成等比数列时,a为有理数.
查看答案
已知抛物线的顶点在坐标原点,对称轴为x轴,焦点F在直线m:y=manfen5.com 满分网上,直线m与抛物线相交于A,B两点,P为抛物线上一动点(不同于A,B),直线PA,PB分别交该抛物线的准线l于点M,N.
(1)求抛物线方程;
(2)求证:以MN为直径的圆C经过焦点F,且当P为抛物线的顶点时,圆C与直线m相切.

manfen5.com 满分网 查看答案
已知某种稀有矿石的价值y(单位:元)与其重量ω(单位:克)的平方成正比,且3克该种矿石的价值为54000元.
(1)写出y(单位:元)关于ω单位:克)的函数关系式;
(2)若把一块该种矿石切割成重量比为1:3的两块矿石,求价值损失的百分率;
(3)把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大.(注:价值损失的百分率=manfen5.com 满分网×100%;在切割过程中的重量损耗忽略不计)
查看答案
已知函数manfen5.com 满分网的图象如图所示,
直线manfen5.com 满分网是其两条对称轴.
(1)求函数f(x)的解析式并写出函数的单调增区间;
(2)若f(α)=manfen5.com 满分网manfen5.com 满分网,求f(αmanfen5.com 满分网)的值.

manfen5.com 满分网 查看答案
如图,在直三棱柱ABC-A1B1C1中,AB=AC,点D在边BC上,AD⊥C1D.
(1)求证:AD⊥平面BCC1B1
(2)如果点E是B1C1的中点,求证:A1E∥平面ADC1

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.