如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°,F为AE中点.
(Ⅰ)求证:平面ADE⊥平面ABE;
(Ⅱ)求二面角A-EB-D的大小的余弦值;
(Ⅲ)求点F到平面BDE的距离.
考点分析:
相关试题推荐
已知关于x的一元二次函数f(x)=ax
2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域
内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:
x+8(0<x≤120).已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案
已知函数
.
(1)求函数f(x)的单调增区间;
(2)已知f(α)=3,且α∈(0,π),求α的值.
查看答案
如图,在Rt△ABC中,∠A=90°,以AB为直径的半圆交BC于D,过D作圆的切线交AC于E.
求证:(1)AE=CE;
(2)CD•CB=4DE
2,
查看答案
函数y=|x-1|+|x-3|的最小值是
.
查看答案