满分5 > 高中数学试题 >

已知函数(x∈R),其中a∈R. (I)当a=1时,求曲线y=f(x)在点(2,...

已知函数manfen5.com 满分网(x∈R),其中a∈R.
(I)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(II)当a≠0时,求函数f(x)的单调区间与极值.
(I)把a=1代入,先对函数求导,然后求f(2),根据导数的几何意义可知,该点切线的斜率k=f′(2),从而求出切线方程. (II)先对函数求导,分别解f′(x)>0,f′(x)<0,解得函数的单调区间,根据函数的单调性求函数的极值. 【解析】 (I)【解析】 当a=1时,. 又. 所以,曲线y=f(x)在点(2,f(2))处的切线方程为,即6x+25y-32=0. (II)【解析】 =. 由于a≠0,以下分两种情况讨论. (1)当a>0时,令f'(x)=0,得到.当x变化时,f'(x),f(x)的变化情况如下表: 所以f(x)在区间,(a,+∞)内为减函数,在区间内为增函数. 函数f(x)在处取得极小值,且. 函数f(x)在x2=a处取得极大值f(a),且f(a)=1. (2)当a<0时,令f'(x)=0,得到.当x变化时,f'(x),f(x)的变化情况如下表: 所以f(x)在区间(-∞,a)内为增函数,在区间内为减函数. 函数f(x)在x1=a处取得极大值f(a),且f(a)=1. 函数f(x)在处取得极小值,且.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(I)证明:CD⊥AE;
(II)证明:PD⊥平面ABE;
(III)求二面角A-PD-C的大小.

manfen5.com 满分网 查看答案
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑色球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
查看答案
已知函数f(x)=2cosx(sinx-cosx)+1,x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间manfen5.com 满分网上的最小值和最大值.
查看答案
manfen5.com 满分网如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色.要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有    种(用数字作答). 查看答案
如图,在△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上一点,DC=2BD,则manfen5.com 满分网=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.