满分5 > 高中数学试题 >

已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是. (Ⅰ...

已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是manfen5.com 满分网
(Ⅰ)求双曲线C的方程;
(Ⅱ)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为manfen5.com 满分网,求k的取值范围.
(1)设出双曲线方程,根据焦点坐标及渐近线方程求出待定系数,即得双曲线C的方程. (2)设出直线l的方程,代入双曲线C的方程,利用判别式及根与系数的关系求出MN的中点坐标,从而得到线段MN的垂直平分线方程,通过求出直平分线与坐标轴的交点,计算围城的三角形面积,由判别式大于0,求得k的取值范围. 【解析】 (Ⅰ)【解析】 设双曲线C的方程为(a>0,b>0). 由题设得,解得,所以双曲线方程为. (Ⅱ)【解析】 设直线l的方程为y=kx+m(k≠0). 点M(x1,y1),N(x2,y2)的坐标满足方程组 将①式代入②式,得,整理得(5-4k2)x2-8kmx-4m2-20=0. 此方程有两个一等实根,于是5-4k2≠0,且△=(-8km)2+4(5-4k2)(4m2+20)>0.整理得m2+5-4k2>0. ③ 由根与系数的关系可知线段MN的中点坐标(x,y)满足,. 从而线段MN的垂直平分线方程为. 此直线与x轴,y轴的交点坐标分别为,. 由题设可得. 整理得,k≠0. 将上式代入③式得,整理得(4k2-5)(4k2-|k|-5)>0,k≠0. 解得或. 所以k的取值范围是.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,其中a,b∈R.
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若对于任意的manfen5.com 满分网,不等式f(x)≤10在manfen5.com 满分网上恒成立,求b的取值范围.
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2manfen5.com 满分网,∠PAB=60°.
(Ⅰ)证明AD⊥平面PAB;
(Ⅱ)求异面直线PC与AD所成的角的大小;
(Ⅲ)求二面角P-BD-A的大小.
查看答案
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为manfen5.com 满分网与p,且乙投球2次均未命中的概率为manfen5.com 满分网
(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.
查看答案
已知cos(x-manfen5.com 满分网)=manfen5.com 满分网,x∈(manfen5.com 满分网manfen5.com 满分网).
(1)求sinx的值;
(2)求sin(2xmanfen5.com 满分网)的值.
查看答案
设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程logax+logay=c,这时,a的取值的集合为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.