满分5 > 高中数学试题 >

已知数列{an}是等差数列,cn=an2-an+12(n∈N*) (1)判断数列...

已知数列{an}是等差数列,cn=an2-an+12(n∈N*
(1)判断数列{cn}是否是等差数列,并说明理由;
(2)如果a1+a3+…+a25=130,a2+a4+…+a26=143-13k(k为常数),试写出数列{cn}的通项公式;
(3)在(2)的条件下,若数列{cn}得前n项和为Sn,问是否存在这样的实数k,使Sn当且仅当n=12时取得最大值.若存在,求出k的取值范围;若不存在,说明理由.
(1)设{an}的公差为d,则cn+1-cn=(an+12-an+22)-(an2-an+12)=-2d2,所以数列{cn}是以-2d2为公差的等差数列. (2)由a1+a3+…+a25=130a2+a4+…+a26=143-13k,知13d=13-13k,d=1-k,由此能导出an=a1+(n-1)d=(1-kn+(13k-3)),由此能求出数列{cn}的通项公式. (3)因为当且仅当n=12时Sn最大,所以c12>0,c13<0,由此能求出k的取值范围. 【解析】 (1)设{an}的公差为d,则cn+1-cn=(an+12-an+22)-(an2-an+12)=2an+12-(an+1-d)2-(an+1+d)2=-2d2 ∴数列{cn}是以-2d2为公差的等差数列(4分) (2)∵a1+a3+…+a25=130a2+a4+…+a26=143-13k∴两式相减:13d=13-13k ∴d=1-k(6分) ∴∴a1=-2+12k(8分) ∴an=a1+(n-1)d=(1-k)n+(13k-3) ∴cn=an2-an+12=(an+an+1)(an-an+1)=26k2-32+6-(2n+1)(1-k2)=-2(1-k)2•n+25k2-30k+5(10分) (3)因为当且仅当n=12时Sn最大 ∴有c12>0,c13<0(12分) 即 (15分)
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网为奇函数,g(x)=f(x)+loga(x-1)(ax+1)( a>1,且m≠1).
(1)求m值;
(2)求g(x)的定义域;
(3)若g(x)在manfen5.com 满分网上恒正,求a的取值范围.
查看答案
已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f'(x)是奇函数.
(1)求f(x)的表达式;
(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.
查看答案
设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2-3a2=4manfen5.com 满分网bc.
(Ⅰ)求sinA的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
已知manfen5.com 满分网
(1)若manfen5.com 满分网,求manfen5.com 满分网的值;
(2)若manfen5.com 满分网,求sinx-cosx的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.