(1)先根据正弦定理将边a,c的比值转化为其正弦值的比,再由诱导公式和两角和与差的正弦公式可求出B=C,可判断△ABC为等腰三角形;或者根据余弦定理表示出cosB使之等于,也可求出b=c,进而可判断△ABC为等腰三角形.
(2)先根据角B的正弦值求出其余弦值,再由诱导公式可求出角A的正弦值,最后根据三角形的面积公式可得到最终答案.
【解析】
(1)∵,
∴,
∴sinA=2cosBsinC,
又∵sinA=sin[π-(B+C)]=sin(B+C)=sinBcosC+cosBsinC,
∴sinBcosC+cosBsinC=2cosBsinC,
∴sinBcosC-cosBsinC=sin(B-C)=0
∴在△ABC中B=C,
∴△ABC为等腰三角形
另【解析】
∵,
∴a2+c2-b2=a2,
∴c2=b2
∴c=b
∴△ABC为等腰三角形
(2)∵,
∵,∴,
∴,
∴.