满分5 > 高中数学试题 >

在△ABC中,已知2sinAcosB=sinC,那么△ABC一定是( ) A.直...

在△ABC中,已知2sinAcosB=sinC,那么△ABC一定是( )
A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.正三角形
根据三角形三个内角和为180°,把角C变化为A+B,用两角和的正弦公式展开移项合并,公式逆用,得sin(B-A)=0,因为角是三角形的内角,所以两角相等,得到三角形是等腰三角形. 【解析】 由2sinAcosB=sinC知2sinAcosB=sin(A+B), ∴2sinAcosB=sinAcosB+cosAsinB. ∴cosAsinB-sinAcosB=0. ∴sin(B-A)=0, ∵A和B是三角形的内角, ∴B=A. 故选B
复制答案
考点分析:
相关试题推荐
设集合A={x|y=lg(1-x)},集合B={y|y=x2},则A∩B=( )
A.(-∞,1)
B.(-∞,1]
C.[0,1]
D.[0,1)
查看答案
已知数列{an}对于任意p,q∈N*,都有ap+aq=ap+q,且a1=2.
(1)求an的表达式;
(2)将数列{an}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b5+b100的值;
(3)设An为数列manfen5.com 满分网的前n项积,是否存在实数a,使得不等式manfen5.com 满分网对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案
已知曲线W上的动点M到点F(1,0)的距离等于它到直线x=-1的距离.过点P(-1,0)任作一条直线l与曲线W交于不同的两点A、B,点A关于x轴的对称点为C.
(Ⅰ)求曲线W的方程;
(Ⅱ)求证manfen5.com 满分网
(Ⅲ)求△PBC面积S的取值范围.
查看答案
设函数manfen5.com 满分网,a∈R.
(Ⅰ)当x=2时,f(x)取得极值,求a的值;
(Ⅱ)若f(x)在(0,+∞)内为增函数,求a的取值范围.
查看答案
直三棱柱ABC-A1B1C1中,∠ACB=120°,AC=CB=A1A=1.
(Ⅰ)求证:B1C1∥平面A1BC;
(Ⅱ)求三棱锥A-A1CB的体积;
(Ⅲ)求二面角A1-CB-A的正切值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.