满分5 > 高中数学试题 >

已知等比数列{an}中,a2=32,,an+1<an. (1)求数列{an}的通...

已知等比数列{an}中,a2=32,manfen5.com 满分网,an+1<an
(1)求数列{an}的通项公式;
(2)设Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相应的n值.
(1)根据等比数列的性质可知第八项与第二项的比值等于公比的六次方,利用已知即可求出公比的值,然后根据第二项的值与求出公比的值求出首项,根据首项和公比写出等比数列的通项公式即可; (2)设bn=log2an,把第一问求出的通项公式代入即可得到bn的通项公式,从而根据通项公式得到bn为等差数列,根据首项和公差,根据等差数量的前n项和的公式得到Tn的通项,利用二次函数求最值的方法即可得到Tn的最大值及相应的n值. 【解析】 (1),an+1<an, 所以:. 以为首项. 所以,通项公式为:. (2)设bn=log2an,则bn=log227-n=7-n. 所以{bn}是首项为6,公差为-1的等差数列. =. 因为n是自然数,所以n=6或n=7时,Tn最大,其最值是T6=T7=21
复制答案
考点分析:
相关试题推荐
已知平面区域manfen5.com 满分网恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖.
(1)试求圆C的方程.
(2)若斜率为1的直线l与圆C交于不同两点A,B满足CA⊥CB,求直线l的方程.
查看答案
已知|x|≤2,|y|≤2,点P的坐标为(x,y).
(I)求当x,y∈R时,P满足(x-2)2+(y-2)2≤4的概率;
(II)求当x,y∈Z时,P满足(x-2)2+(y-2)2≤4的概率.
查看答案
已知:A(5,0),B(0,5),C(cosα,sinα),α∈(0,π).
(1)若manfen5.com 满分网,求sin2α;
(2)若manfen5.com 满分网,求manfen5.com 满分网manfen5.com 满分网的夹角.
查看答案
manfen5.com 满分网如图所示,圆O上一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于    查看答案
已知圆的极坐标方程ρ=2cosθ,直线的极坐标方程为ρcosθ-2ρsinθ+7=0,则圆心到直线距离为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.