先根据⊥推断两向量的积为0求得tanA的值,进而其求得A,进而利用正弦定理分别表示出a和c代入题设等式中化简整理求得sinC的值,进而求得C,最后利用三角形内角和求得答案.
【解析】
∵⊥,
∴•=cosA-sinA=0
∴tanA=,A=60°
三角形正弦定理:
∴a= c=b
∵acosB+bcosA=csinC,
∴acosB+bcosA=csinC=
∴cosB+bcosA=
整理得sinAcosB+cosAsinB=(sinC)2
∵A+B+C=180∴A+B=180-C
∴sin(A+B)=sinC=(sinC)2
∴sinC=1
∴C=90°∴B=90°-60°=30°
故选A