满分5 > 高中数学试题 >

已知函数把方程f(x)=x的根按从小到大的顺序排列成一个数列,则该数列的通项公式...

已知函数manfen5.com 满分网把方程f(x)=x的根按从小到大的顺序排列成一个数列,则该数列的通项公式为( )
A.manfen5.com 满分网(n∈N*
B.an=n(n-1)(n∈N*
C.an=n-1(n∈N*
D.an=2n-2(n∈N*
函数y=f(x)与y=x在(0,1],(1,2],(2,3],(3,4],…(n,n+1]上的交点依次为(0,0),(1,1),(2,2),(3,3),(4,4),…(n+1,n+1).即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…n+1.方程f(x)-x=0的根按从小到大的顺序排列所得数列为0,1,2,3,4,…其通项公式为an=n-1. 【解析】 若0<x≤1,则-1<x-1<0,得f(x)=f(x-1)+1=2x-1, 若1<x≤2,则0<x-1≤1,得f(x)=f(x-1)+1=2x-2+1 若2<x≤3,则1<x-1≤2,得f(x)=f(x-1)+1=2x-3+2 若3<x≤4,则2<x-1<3,得f(x)=f(x-1)+1=2x-4+3 以此类推,若n<x≤n+1(其中n∈N),则f(x)=f(x-1)+1=2x-n-1+n, 下面分析函数f(x)=2x的图象与直线y=x+1的交点 很显然,它们有两个交点(0,1)和(1,2), 由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点. 然后①将函数f(x)=2x和y=x+1的图象同时向下平移一个单位即得到函数f(x)=2x-1和y=x的图象, 取x≤0的部分,可见它们有且仅有一个交点(0,0). 即当x≤0时,方程f(x)-x=0有且仅有一个根x=0. ②取①中函数f(x)=2x-1和y=x图象-1<x≤0的部分,再同时向上和向右各平移一个单位, 即得f(x)=2x-1和y=x在0<x≤1上的图象,显然,此时它们仍然只有一个交点(1,1). 即当0<x≤1时,方程f(x)-x=0有且仅有一个根x=1. ③取②中函数f(x)=2x-1和y=x在0<x≤1上的图象,继续按照上述步骤进行, 即得到f(x)=2x-2+1和y=x在1<x≤2上的图象,显然,此时它们仍然只有一个交点(2,2). 即当1<x≤2时,方程f(x)-x=0有且仅有一个根x=2. ④以此类推,函数y=f(x)与y=x在(2,3],(3,4],…(n,n+1]上的交点依次为(3,3),(4,4),…(n+1,n+1). 即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…n+1. 综上所述方程f(x)-x=0的根按从小到大的顺序排列所得数列为 0,1,2,3,4,… 其通项公式为an=n-1; 故选C.
复制答案
考点分析:
相关试题推荐
在四面体ABCD中,已知DA=DB=DC=1,且DA、DB、DC两两互相垂直,在该四面体表面上与点A距离为manfen5.com 满分网的点形成一条曲线,则这条曲线的长度是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
若由三个数字1、2、3组成的五位数中,1、2、3都至少出现一次,则这样的五位数的个数为( )
A.150
B.180
C.236
D.240
查看答案
设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )
A.y2=±4
B.y2=4
C.y2=±8
D.y2=8
查看答案
已知不等式组manfen5.com 满分网确定的平面区域为D,记区域D关于直线y=x对称的区域为E,则区域D中的点与区域E中的点之间的最近距离等于( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
若函数y=Asin(ωx+φ)(A>0,ω>0,manfen5.com 满分网)在一个周期内的图象如图所示,M、N分别是这段图象的最高点和最低点,且manfen5.com 满分网,则A•ω=( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.