满分5 > 高中数学试题 >

如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=...

如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求二面角C-PD-E的大小;
(Ⅲ)求点B到平面PDE的距离.

manfen5.com 满分网
(I)由题意,利用三角形相似及角的互余得到线线垂直,再利用线面垂直的判定定理求出线面垂直,进而利用面面垂直的判定定理证出面面垂直; (II)利用面面垂直及三垂线定理求出二面角的平面角,然后再三角形中解出二面角的大小; (III)利用线面垂直的性质及直角三角形求出点到面的距离. 【解析】 (Ⅰ)设AC与DE交点为G,延长DE交CB的延长线于点F, 则△DAE≌△FBE,∴BF=AD=1,∴CF=4,∴, 又∵,∴∠F=∠ACD, 又∵∠ACD+∠ACF=90°,∴∠F+∠ACF=90°, ∴∠CGF=90°,∴AC⊥DE 又∵PC⊥底面ABCD,∴PC⊥DE,∴DE⊥平面PAC, ∵DE⊂平面PDE,∴平面PDE⊥平面PAC (Ⅱ)连接PG,过点C作CH⊥PG于H点,取PD中点I,连接CI,易知CI⊥PD 又由(Ⅰ)知平面PDE⊥平面PAC,且PG是交线, 根据面面垂直的性质,得CH⊥平面PDE, 由三垂线定理知HI⊥PD 从而∠CIH为二面角C-PD-E的平面角 在等腰Rt△PCD中,; 在Rt△DCA中,=, 在Rt△PCG中, 从而,则 即二面角C-PD-E的大小为 (Ⅲ)由于,所以可知点B到平面PDE的距离等于点C到平面PDE的距离的,即.在Rt△PCG中,, 从而点B到平面PDE的距离等于.
复制答案
考点分析:
相关试题推荐
某汽车驾驶学校在学员结业前,对学员的驾驶技术进行4次考核,规定:按顺序考核,一旦考核合格就不必参加以后的考核,否则还需参加下次考核.若学员小李独立参加每次考核合格的概率依次组成一个公差为manfen5.com 满分网的等差数列,他参加第一次考核合格的概率不超过manfen5.com 满分网,且他直到第二次考核才合格的概率为manfen5.com 满分网
(1)求小李第一次参加考核就合格的概率P1
(2)求小李参加考核的次数ξ的数学期望.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且a、b、c成等比数列.
(1)求角B的取值范围;
(2)若关于B的表达式cos2B-4sin(manfen5.com 满分网)sin(manfen5.com 满分网)+m>0恒成立,求实数m的取值范围.
查看答案
设a+a1(x+2)+a2(x+2)2+…+a12(x+12)12=(x2-2x-2)6,其中ai为常数,则2a2+6a3+12a4+20a5+••+132a12=    查看答案
圆锥的轴截面SAB是边长为2的等边三角形,O为底面中心,M为SO的中点,动点P在圆锥底面内(包括圆周).若AM⊥MP,则P点形成的轨迹的长度为     查看答案
将一个4×4棋盘中的8个小方格染成黑色,使得每行、每列都恰有两个黑色方格,则不同的染法种数有     .(用数字作答) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.