满分5 > 高中数学试题 >

椭圆的左、右焦点分别为F1、F2,过F1的直线l与椭圆交于A、B两点. (1)如...

椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,过F1的直线l与椭圆交于A、B两点.
(1)如果点A在圆x2+y2=c2(c为椭圆的半焦距)上,且|F1A|=c,求椭圆的离心率;
(2)若函数manfen5.com 满分网,(m>0且m≠1)的图象,无论m为何值时恒过定点(b,a),求manfen5.com 满分网的取值范围.
(1)根据题意判断出∴△AF1F2为一直角三角形,利用勾股定理求得|F2A|利用椭圆的定义求得|AF1|+|AF2|=2a,进而求得a和c的关系,则椭圆的离心率可得. (2)利用函数的图象恒过定点,求得a和b,则c可求得,求得椭圆的两焦点,先看AB⊥x轴时,求得A,B的坐标,进而求得的坐标,则可求得;再看AB与x轴不垂直,设直线AB的方程,与椭圆的方程联立消去y,利用判别式求得k的范围,设出A,B的坐标,进而表示出x1+x2和x1x2,的坐标进而求得的表达式,利用k的范围确定的范围. 【解析】 (1)∵点A在圆x2+y2=c2上, ∴△AF1F2为一直角三角形, ∵ 由椭圆的定义知:|AF1|+|AF2|=2a,∴c+2c=2a ∴e===-1 (2)∵函数x的图象恒过点 ∴, 点F1(-1,0),F2(1,0), ①若AB⊥x轴,则A, ∴ ②若AB与x轴不垂直,设直线AB的斜率为k,则AB的方程为y=k(x+1) 由消去y得(1+2k2)x2+4k2x+2(k2-1)=0(*) ∵△=8k2+8>0,∴方程(*)有两个不同的实根. 设点A(x1,y1),B(x2,y2), 则x1,x2是方程(*)的两个根 , = ∵ , 由①②知.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=-manfen5.com 满分网2x,g(x)=logax(a>0,且a≠1),其中a为常数.如果h(x)=f(x)+g(x)是增函数,且h(x)存在零点(h(x)为h(x)的导函数).
(1)求a的值;
(2)设A(x1,y1)、B(x2,y2)(x1<x2)是函数y=g(x)的图象上两点,manfen5.com 满分网(g(x)为g(x)的导函数),证明:x1<x<x2
查看答案
如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求二面角C-PD-E的大小;
(Ⅲ)求点B到平面PDE的距离.

manfen5.com 满分网 查看答案
某汽车驾驶学校在学员结业前,对学员的驾驶技术进行4次考核,规定:按顺序考核,一旦考核合格就不必参加以后的考核,否则还需参加下次考核.若学员小李独立参加每次考核合格的概率依次组成一个公差为manfen5.com 满分网的等差数列,他参加第一次考核合格的概率不超过manfen5.com 满分网,且他直到第二次考核才合格的概率为manfen5.com 满分网
(1)求小李第一次参加考核就合格的概率P1
(2)求小李参加考核的次数ξ的数学期望.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且a、b、c成等比数列.
(1)求角B的取值范围;
(2)若关于B的表达式cos2B-4sin(manfen5.com 满分网)sin(manfen5.com 满分网)+m>0恒成立,求实数m的取值范围.
查看答案
设a+a1(x+2)+a2(x+2)2+…+a12(x+12)12=(x2-2x-2)6,其中ai为常数,则2a2+6a3+12a4+20a5+••+132a12=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.