满分5 > 高中数学试题 >

设f(x)=asin2x+bcos2x,a,b∈R,ab≠0若f(x)≤|f()...

设f(x)=asin2x+bcos2x,a,b∈R,ab≠0若f(x)≤|f(manfen5.com 满分网)|对一切x∈R恒成立,则
①f(manfen5.com 满分网)=0.
②|f(manfen5.com 满分网)|<|f(manfen5.com 满分网)|.
③f(x)既不是奇函数也不是偶函数.
④f(x)的单调递增区间是[kπ+manfen5.com 满分网,kπ+manfen5.com 满分网](k∈Z).
⑤存在经过点(a,b)的直线于函数f(x)的图象不相交.
以上结论正确的是    写出正确结论的编号).
先化简f(x)的解析式,利用已知条件中的不等式恒成立,得到是三角函数的最大值,得到是三角函数的对称轴,将其代入整体角令整体角等于求出辅助角θ,再通过整体处理的思想研究函数的性质. 【解析】 ∵f(x)=asin2x+bcos2x= ∵ ∴ ∴ ∴= 对于=0,故①对 对于②,,故②错 对于③,f(x)不是奇函数也不是偶函数 对于④,由于f(x)的解析式中有±,故单调性分情况讨论,故④不对 对于⑤∵要使经过点(a,b)的直线与函数f(x)的图象不相交,则此直线须与横轴平行,且|b|,此时平方得b2>a2+b2这不可能,矛盾,故∴不存在经过点(a,b)的直线于函数f(x)的图象不相交故⑤错 故答案为①③
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网manfen5.com 满分网满足(manfen5.com 满分网+2manfen5.com 满分网)•(manfen5.com 满分网-manfen5.com 满分网)=-6,|manfen5.com 满分网|=1,|manfen5.com 满分网|=2,则manfen5.com 满分网manfen5.com 满分网的夹角为    查看答案
函数manfen5.com 满分网的定义域是    查看答案
manfen5.com 满分网如图所示,程序框图(算法流程图)的输出结果是    查看答案
设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x.则f(1)=    查看答案
manfen5.com 满分网函数f(x)=axn(1-x)2在区间(0.1)上的图象如图所示,则n可能是( )
A.1
B.2
C.3
D.4
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.