满分5 > 高中数学试题 >

如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,O...

如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形
(I)证明直线BC∥EF;
(II)求棱锥F-OBED的体积.

manfen5.com 满分网
(I)利用同位角相等,两直线平行得到OB∥DE;OB=,得到B是GE的中点;同理C是FG的中点;利用三角形的中位线平行于底边,得证. (II)利用三角形的面积公式求出底面分成的两个三角形的面积,求出底面的面积;利用两个平面垂直的性质找到高,求出高的值;利用棱锥的体积公式求出四棱锥的体积. 【解析】 (I)证明:设G是线段DA与线段EB延长线的交点,由于△OAB与△ODE都是正三角形,所以OB∥DE,OB=同理,设G′是线段DA与线段FC延长线的交点,有OG′=OD=2,又由于G与G′都在线段DA的延长线上,所以G与G′重合,在△GED和△GFD中,由和可知B,C分别是GE,GF的中点,所以BC是△GFE的中位线,故BC∥EF (II)【解析】 由OB=1,OE=2,∠EOB=60°,知而△OED是边长为2的正三角形,故所以过点F作FQ⊥AD,交AD于点Q.由平面ABED⊥平面ACFD,FQ就是四棱锥F-OBED的高,且FQ=,所以 另外本题还可以用向量法解答,同学们可参考图片,自行解一下,解法略.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网,其中a为正实数
(Ⅰ)当a=manfen5.com 满分网时,求f(x)的极值点;
(Ⅱ)若f(x)为R上的单调函数,求a的取值范围.
查看答案
设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+2=0
(1)证明l1与l2相交;
(2)证明l1与l2的交点在椭圆2x2+y2=1上.
查看答案
在△ABC中,a,b,c,分别为内角A,B,C所对的边长,a=manfen5.com 满分网,b=manfen5.com 满分网,1+2cos(B+C)=0,求边BC上的高.
查看答案
设f(x)=asin2x+bcos2x,a,b∈R,ab≠0若f(x)≤|f(manfen5.com 满分网)|对一切x∈R恒成立,则
①f(manfen5.com 满分网)=0.
②|f(manfen5.com 满分网)|<|f(manfen5.com 满分网)|.
③f(x)既不是奇函数也不是偶函数.
④f(x)的单调递增区间是[kπ+manfen5.com 满分网,kπ+manfen5.com 满分网](k∈Z).
⑤存在经过点(a,b)的直线于函数f(x)的图象不相交.
以上结论正确的是    写出正确结论的编号). 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网满足(manfen5.com 满分网+2manfen5.com 满分网)•(manfen5.com 满分网-manfen5.com 满分网)=-6,|manfen5.com 满分网|=1,|manfen5.com 满分网|=2,则manfen5.com 满分网manfen5.com 满分网的夹角为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.