满分5 > 高中数学试题 >

在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2...

在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n≥1.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn
(I)根据在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,我们易得这n+2项的几何平均数为10,故Tn=10n+2,进而根据对数的运算性质我们易计算出数列{an}的通项公式; (II)根据(I)的结论,利用两角差的正切公式,我们易将数列{bn}的每一项拆成的形式,进而得到结论. 【解析】 (I)∵在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列, 又∵这n+2个数的乘积计作Tn, ∴Tn=10n+2 又∵an=lgTn, ∴an=lg10n+2=n+2,n≥1. (II)∵bn=tanan•tanan+1=tan(n+2)•tan(n+3)=, ∴Sn=b1+b2+…+bn=[]+[]+…+[] =
复制答案
考点分析:
相关试题推荐
某地最近十年粮食需求量逐年上升,下表是部分统计数据:
年份20022004200620082010
需求量(万吨)236246257276286
(Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程manfen5.com 满分网=bx+a;
(Ⅱ)利用(Ⅰ)中所求的直线方程预测该地2012年的粮食需求量.
查看答案
如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形
(I)证明直线BC∥EF;
(II)求棱锥F-OBED的体积.

manfen5.com 满分网 查看答案
manfen5.com 满分网,其中a为正实数
(Ⅰ)当a=manfen5.com 满分网时,求f(x)的极值点;
(Ⅱ)若f(x)为R上的单调函数,求a的取值范围.
查看答案
设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+2=0
(1)证明l1与l2相交;
(2)证明l1与l2的交点在椭圆2x2+y2=1上.
查看答案
在△ABC中,a,b,c,分别为内角A,B,C所对的边长,a=manfen5.com 满分网,b=manfen5.com 满分网,1+2cos(B+C)=0,求边BC上的高.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.