满分5 > 高中数学试题 >

设函数f(x)=lnx+ln(2-x)+ax(a>0). (1)当a=1时,求f...

设函数f(x)=lnx+ln(2-x)+ax(a>0).
(1)当a=1时,求f(x)的单调区间.
(2)若f(x)在(0,1]上的最大值为manfen5.com 满分网,求a的值.
(1)已知a=1,f′(x)=-+1,求解f(x)的单调区间,只需令f′(x)>0解出单调增区间,令f′(x)<0解出单调减区间. (2)区间(0,1]上的最值问题,通过导数得到单调性,结合极值点和端点的比较得到,确定待定量a的值. 【解析】 对函数求导得:,定义域为(0,2) (1)当a=1时,f′(x)=-+1, 当f′(x)>0,即0<x<时,f(x)为增函数;当f′(x)<0,<x<2时,f(x)为减函数. 所以f(x)的单调增区间为(0,),单调减区间为(,2) (2)函数f(x)=lnx+ln(2-x)+ax(a>0). ,>0,所以函数为单调增函数,(0,1]为单调递增区间. 最大值在右端点取到. 所以a=.
复制答案
考点分析:
相关试题推荐
某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完迷宫为止.令ξ表示走出迷宫所需的时间.
(1)求ξ的分布列;
(2)求ξ的数学期望.
查看答案
已知函数f(x)=(1+cotx)sin2x+msin(x+manfen5.com 满分网)sin(x-manfen5.com 满分网).
(1)当m=0时,求f(x)在区间manfen5.com 满分网上的取值范围;
(2)当tana=2时,manfen5.com 满分网,求m的值.
查看答案
如图,在三棱锥O-ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为   
manfen5.com 满分网 查看答案
点A(x,y)在双曲线manfen5.com 满分网的右支上,若点A到右焦点的距离等于2x,则x=    查看答案
将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个不同场馆服务,不同的分配方案有    种(用数字作答). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.