满分5 > 高中数学试题 >

证明以下命题: (1)对任一正整a,都存在整数b,c(b<c),使得a2,b2,...

证明以下命题:
(1)对任一正整a,都存在整数b,c(b<c),使得a2,b2,c2成等差数列.
(2)存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an2,bn2,cn2成等差数列.
(1)要证a2,b2,c2成等差数列,考虑到结构即要证a2+c2=2b2,取特值12,52,72满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立.类似勾股数进行拼凑. (2)结合第一问的特征,将等差数列分解,通过一个可做多种结构分解的因式说明构成三角形,再证明互不相似,且无穷. 解(1)考虑到结构特征,取特值12,52,72满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立. (2)证明:当an2,bn2,cn2成等差数列,则bn2-an2=cn2-bn2, 分解得:(bn+an)(bn-an)=(cn+bn)(cn-bn) 选取关于n的一个多项式,4n(n2-1)做两种途径的分解4n(n2-1)=(2n-2)(2n2+2n)=(2n2-2n)(2n+2)4n(n2-1) 对比目标式,构造,由第一问结论得,等差数列成立, 考察三角形边长关系,可构成三角形的三边. 下证互不相似. 任取正整数m,n,若△m,△n相似:则三边对应成比例, 由比例的性质得:,与约定不同的值矛盾,故互不相似.
复制答案
考点分析:
相关试题推荐
设椭圆C2manfen5.com 满分网=1(a>b>0),抛物线C2:x2+by=b2
(1)若C2经过C1的两个焦点,求C1的离心率;
(2)设A(0,b),manfen5.com 满分网,又M、N为C1与C2不在y轴上的两个交点,若△AMN的垂心为manfen5.com 满分网,且△QMN的重心在C2上,求椭圆C和抛物线C2的方程.
查看答案
如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2manfen5.com 满分网
(1)求直线AM与平面BCD所成的角的大小;
(2)求平面ACM与平面BCD所成的二面角的正弦值.

manfen5.com 满分网 查看答案
设函数f(x)=lnx+ln(2-x)+ax(a>0).
(1)当a=1时,求f(x)的单调区间.
(2)若f(x)在(0,1]上的最大值为manfen5.com 满分网,求a的值.
查看答案
某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完迷宫为止.令ξ表示走出迷宫所需的时间.
(1)求ξ的分布列;
(2)求ξ的数学期望.
查看答案
已知函数f(x)=(1+cotx)sin2x+msin(x+manfen5.com 满分网)sin(x-manfen5.com 满分网).
(1)当m=0时,求f(x)在区间manfen5.com 满分网上的取值范围;
(2)当tana=2时,manfen5.com 满分网,求m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.