满分5 > 高中数学试题 >

若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的( )...

若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的( )
A.充要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
m=2时,可直接求A∩B,反之A∩B={4}时可求m. 【解析】 若m=2,则A={1,4},B={2,4},A∩B={4},“m=2”是“A∩B={4}”的充分条件;若A∩B={4},则m2=4,m=±2,所以“m=2”不是“A∩B={4}”的必要条件. 故选C.
复制答案
考点分析:
相关试题推荐
若抛物线y2=2px的焦点与椭圆manfen5.com 满分网的右焦点重合,则p的值为( )
A.-2
B.2
C.-4
D.4
查看答案
已知向量manfen5.com 满分网=(3,-4 ),manfen5.com 满分网=(5,2),则向量manfen5.com 满分网+manfen5.com 满分网等于( )
A.(2,6)
B.(6,2)
C.(8,-2)
D.(-8,2)
查看答案
证明以下命题:
(1)对任一正整a,都存在整数b,c(b<c),使得a2,b2,c2成等差数列.
(2)存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an2,bn2,cn2成等差数列.
查看答案
设椭圆C2manfen5.com 满分网=1(a>b>0),抛物线C2:x2+by=b2
(1)若C2经过C1的两个焦点,求C1的离心率;
(2)设A(0,b),manfen5.com 满分网,又M、N为C1与C2不在y轴上的两个交点,若△AMN的垂心为manfen5.com 满分网,且△QMN的重心在C2上,求椭圆C和抛物线C2的方程.
查看答案
如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2manfen5.com 满分网
(1)求直线AM与平面BCD所成的角的大小;
(2)求平面ACM与平面BCD所成的二面角的正弦值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.