满分5 > 高中数学试题 >

抛物线y=g(x)经过点O(0,0)、A(m,0)与点P(m+1,m+1),其中...

抛物线y=g(x)经过点O(0,0)、A(m,0)与点P(m+1,m+1),其中m>n>0,b<a,设函数f(x)=(x-n)g(x)在x=a和x=b处取到极值.
(1)用m,x表示f(x)=0.
(2)比较a,b,m,n的大小(要求按从小到大排列).
(3)若manfen5.com 满分网,且过原点存在两条互相垂直的直线与曲线y=(x)均相切,求y=f(x)
(1)先设抛物线方程y2=kx(x-m),把点P代入抛物线方程求得k,进而可得抛物线方程可得. (2)f(x)=(x-n)g(x)求得函数f(x)的表达式,求导,根据函数f(x)在x=a和x=b处取到极值,可知f′(a)=0,f′(b)=0,根据m>n可知f′(m)>0,f′(n)<0,进而可判断b<n<a<m. (3)设切点Q(x,y)进而可根据函数f(x)的导函数求得斜率,根据y=x3-(m+n)x2+mnx,可得切线的方程,又根据切线过原点,进而可得-x3-(m+n)x2-mnx=-3x3-2(m+n)x2+mnx,求得x,分别表示出两切线的斜率m+n≤2,确定k1k2的范围,进而根据两条切线垂直可知k1k2=-1,推断出上式等号成立,有m+n=2,且mn=1.进而求得函数f(x)的表达式. 【解析】 (1)由抛物线经过点O(0,0)A(m,0),设抛物线方程y=kx(x-m),k≠0, 又抛物线过点P(m+1,m+1),则m+1=k(m+1)(m+1-m),得k=1, 所以y=g(x)=x(x-m)=x2-mx. (2)f(x)=(x-n)g(x)=x(x-m)(x-n)=x3-(m+n)x2+mnx, f′(x)=3x2-2(m+n)x+mn,函数f(x)在x=a和x=b处取到极值, 故f′(a)=0,f′(b)=0,∵m>n>0, ∴f′(m)=3m2-2(m+n)m+mn=m2-mn=m(m-n)>0 f′(n)=3n2-2(m+n)+mn=n2-mn=n(n-m)<0 又b<a,故b<n<a<m. (3)设切点Q(x,y),则切线的斜率k=f′(x)=3x2-2(m+n)x+mn 又y=x3-(m+n)x2+mnx,,所以切线的方程是 y=x3-(m+n)x2-mnx=[3x2-2(m+n)x+mn](x-x) 又切线过原点,故-x3-(m+n)x2-mnx=-3x3-2(m+n)x2+mnx, 所以2x3-(m+n)x2=0,解得x=0,或x=. 两条切线的斜率为k1=f′(0)=mn,k2=f′(), 由m+n≤2,得(m+n)2≥8,∴-(m+n)2≥-2, ∴k2=f′()=-2(m+n)•+mn=-(m+n)2+mn≥mn-2 所以k1k2=(mn)2-2mn=(mn-1)2-1≥-1, 又两条切线垂直,故k1k2=-1,所以上式等号成立,有m+n=2,且mn=1. 所以f(x)=x3-(m+n)x2+mnx=x3-2x2+x.
复制答案
考点分析:
相关试题推荐
已知椭圆C的中心在坐标原点,左顶点A(-2,0),离心率manfen5.com 满分网,F为右焦点,过焦点F的直线交椭圆C于P、Q两点(不同于点A).
(1)求椭圆C的方程.
(2)当manfen5.com 满分网时,求直线PQ的方程.
(3)判断△ABC能否成为等边三角形,并说明理由.
查看答案
如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=AB=BC=manfen5.com 满分网AD.E为AB中点,F为PC中点.
(Ⅰ)求证:PE⊥BC;
(Ⅱ)求二面角C-PE-A的余弦值;
(Ⅲ)若四棱锥P-ABCD的体积为4,求AF的长.

manfen5.com 满分网 查看答案
某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定.他们三人都有“同意”、“中立”、“反对”三类票各一张.投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为manfen5.com 满分网,他们的投票相互没有影响.规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目投资.
(Ⅰ)求此公司决定对该项目投资的概率;
(Ⅱ)记投票结果中“中立”票的张数为随机变量ξ,求ξ的分布列及数学期望Eξ.
查看答案
已知函数manfen5.com 满分网
(I)求函数f(x)的最小正周期及图象的对称轴方程;
(II)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.
查看答案
有下列命题:
①若f(x)存在导函数,则f′(2x)=[f(2x)]
②若函数h(x)=cos4x-sin4x,则manfen5.com 满分网
③若函数g(x)=(x-1)(x-2)…(x-2009)(x-2010),则g′(2010)=2009!.
④若三次函数f(x)=ax3+bx2+cx+d,则“a+b+c=0”是“f(x)有极值点”的充要条件.
其中真命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.