满分5 > 高中数学试题 >

已知:以点为圆心的圆与x轴交于点O,A,与y轴交于点O、B,其中O为原点, (1...

已知:以点manfen5.com 满分网为圆心的圆与x轴交于点O,A,与y轴交于点O、B,其中O为原点,
(1)求证:△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若OM=ON,求圆C的方程.
(1)求出半径,写出圆的方程,再解出A、B的坐标,表示出面积即可. (2)通过题意解出OC的方程,解出t 的值,直线y=-2x+4与圆C交于点M,N,判断t是否符合要求,可得圆的方程. 【解析】 (1)∵圆C过原点O, ∴, 设圆C的方程是, 令x=0,得, 令y=0,得x1=0,x2=2t ∴, 即:△OAB的面积为定值; (2)∵OM=ON,CM=CN, ∴OC垂直平分线段MN, ∵kMN=-2,∴, ∴直线OC的方程是, ∴,解得:t=2或t=-2, 当t=2时,圆心C的坐标为(2,1),, 此时C到直线y=-2x+4的距离, 圆C与直线y=-2x+4相交于两点, 当t=-2时,圆心C的坐标为(-2,-1),, 此时C到直线y=-2x+4的距离, 圆C与直线y=-2x+4不相交, ∴t=-2不符合题意舍去, ∴圆C的方程为(x-2)2+(y-1)2=5.
复制答案
考点分析:
相关试题推荐
抛物线y=g(x)经过点O(0,0)、A(m,0)与点P(m+1,m+1),其中m>n>0,b<a,设函数f(x)=(x-n)g(x)在x=a和x=b处取到极值.
(1)用m,x表示f(x)=0.
(2)比较a,b,m,n的大小(要求按从小到大排列).
(3)若manfen5.com 满分网,且过原点存在两条互相垂直的直线与曲线y=(x)均相切,求y=f(x)
查看答案
已知椭圆C的中心在坐标原点,左顶点A(-2,0),离心率manfen5.com 满分网,F为右焦点,过焦点F的直线交椭圆C于P、Q两点(不同于点A).
(1)求椭圆C的方程.
(2)当manfen5.com 满分网时,求直线PQ的方程.
(3)判断△ABC能否成为等边三角形,并说明理由.
查看答案
如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=AB=BC=manfen5.com 满分网AD.E为AB中点,F为PC中点.
(Ⅰ)求证:PE⊥BC;
(Ⅱ)求二面角C-PE-A的余弦值;
(Ⅲ)若四棱锥P-ABCD的体积为4,求AF的长.

manfen5.com 满分网 查看答案
某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定.他们三人都有“同意”、“中立”、“反对”三类票各一张.投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为manfen5.com 满分网,他们的投票相互没有影响.规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目投资.
(Ⅰ)求此公司决定对该项目投资的概率;
(Ⅱ)记投票结果中“中立”票的张数为随机变量ξ,求ξ的分布列及数学期望Eξ.
查看答案
已知函数manfen5.com 满分网
(I)求函数f(x)的最小正周期及图象的对称轴方程;
(II)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.