满分5 > 高中数学试题 >

如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC...

如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1
(2)求二面角B-AC-A1的大小;
(3)求此几何体的体积.

manfen5.com 满分网
(1)由题意及图形,利用直三棱柱的特点,因为O为中点连接OD,由题意利用借助线面垂直的判定定理证明OC∥平面A1B1C1; (2)由题意利用三垂线定理找到二面角的平面角,在三角形中进行求解二面角的大小; (3)由题意及图形利用体积分割的方法,把不规则的几何体分割成两个规则的几何体,利用相应的体积公式进行求解. (1)证明:作OD∥AA1交A1B1于D,连C1D. 则OD∥BB1∥CC1. 因为O是AB的中点, 所以OD=. 则ODC1C是平行四边形,因此有OC∥C1D.C1D⊂平面C1B1A1且OC⊄平面C1B1A1, 则OC∥面A1B1C1. (2)如图,过B作截面BA2C2∥面A1B1C1,分别交AA1,CC1于A2,C2. 作BH⊥A2C2于H,连CH. 因为CC1⊥面BA2C2,所以CC1⊥BH,则BH⊥平面A1C. 又因为AB=,BC=,AC=. 所以BC⊥AC,根据三垂线定理知CH⊥AC,所以∠BCH就是所求二面角的平面角. 因为BH=,所以sin∠BCH=,故∠BCH=30°, 即:所求二面角的大小为30°. (3)因为BH=,所以=.=•2=1. 所求几何体体积为=.
复制答案
考点分析:
相关试题推荐
已知复数z1=cosα+isinα,z2=cosβ+isinβ,manfen5.com 满分网
求:(1)求cos(α-β)的值;
(2)若manfen5.com 满分网,且manfen5.com 满分网,求sinα的值.
查看答案
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.
(Ⅰ)求取出的两个球上标号为相邻整数的概率;
(Ⅱ)求取出的两个球上标号之和能被3整除的概率.
查看答案
manfen5.com 满分网如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2manfen5.com 满分网,AB=BC=3.AC的长为    查看答案
(理)在直角坐标系中,圆C的参数方程是manfen5.com 满分网(θ为参数),以原点为极点,以x轴正半轴为极轴建立极坐标系,则圆C的圆心极坐标为    查看答案
设x、y满足约束条件manfen5.com 满分网,则z=x2+y2的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.