满分5 > 高中数学试题 >

已知A(1,1)是椭圆=1(a>b>0)上一点,F1、F2是椭圆的两焦点,且满足...

已知A(1,1)是椭圆manfen5.com 满分网=1(a>b>0)上一点,F1、F2是椭圆的两焦点,且满足|AF1|+|AF2|=4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点C、D是椭圆上两点,直线AC、AD的倾斜角互补,求直线CD的斜率.
(1)根据椭圆的定义可知|AF1|+|AF2|=4=2a,然后将点A(1,1)代入椭圆方程即可求出a,b的值,从而确定椭圆的标准方程. (2)先假设出直线AV的方程,然后联立直线与椭圆消去y得到关于x的一元二次方程,进而表示出点C的横坐标,再由AC、AD直线倾斜角互补可得到直线AD的方程,进而可得到D的横坐标,然后将点C、D的横坐标分表代入直线方程可得到其对应的纵坐标,即可得到答案. 【解析】 (1)由椭圆定义知2a=4,所以a=2, 即椭圆方程为=1 把(1,1)代入得=1所以b2=,椭圆方程为:=1 (2)由题意知,AC的倾斜角不为90,故设AC方程为y=k(x-1)十1, 联立消去y,得(1+3k2)x2-6k(k-1)x+3k2-6k-1=0. ∵点A(1,1)、C在椭圆上,∴xC= ∵AC、AD直线倾斜角互补,∴AD的方程为y=-k(x-l)+1, 同理xD= 又yC=k(xC-1)+1,yD=-k(xD-1)+1, ∴yC-yD=k(xC+xD)-2k. ∴.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=-x2+ax+1-lnx.
(Ⅰ)当a=3时,求函数f(x)的单调递增区间;
(Ⅱ)若f(x)在区间(0,manfen5.com 满分网)上是减函数,求实数a的取值范围.
查看答案
如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1
(2)求二面角B-AC-A1的大小;
(3)求此几何体的体积.

manfen5.com 满分网 查看答案
已知复数z1=cosα+isinα,z2=cosβ+isinβ,manfen5.com 满分网
求:(1)求cos(α-β)的值;
(2)若manfen5.com 满分网,且manfen5.com 满分网,求sinα的值.
查看答案
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.
(Ⅰ)求取出的两个球上标号为相邻整数的概率;
(Ⅱ)求取出的两个球上标号之和能被3整除的概率.
查看答案
manfen5.com 满分网如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2manfen5.com 满分网,AB=BC=3.AC的长为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.