满分5 > 高中数学试题 >

根据如图所示的程序框图,将输出的x,y值依次分别记为x1,x2,…,xn,…,x...

根据如图所示的程序框图,将输出的x,y值依次分别记为x1,x2,…,xn,…,x2008;y1,y2,…,yn,…,y2008
(1)求数列xn的通项公式;
(2)写出y1,y2,y3,y4,由此猜想出数列yn的一个通项公式,并证明你的结论;
(3)求zn=x1y1+x2y2+…+xnyn(x∈N*,n≤2008).

manfen5.com 满分网
(1)由框图,知数列xn中,x1=1,xn+1=xn+2,由此能导出xn. (2)y1=2,y2=8,y3=26,y4=80.由此,猜想yn=3n-1(n∈N*,n≤2008).然后构造成等比数列进行证明. (3)zn=x1y1+x2y2++xnyn=1×(3-1)+3×(32-1)+5×(33-1)++(2n-1)×(3n-1)=1×3+3×32+5×33++(2n-1)×3n-(1+3+5++2n-1)然后用错位相减法进行求解. 【解析】 (1)由框图,知数列xn中,x1=1,xn+1=xn+2 ∴xn=1+2(n-1)=2n-1(n∈N*,n≤2008)(4分) (2)y1=2,y2=8,y3=26,y4=80 由此,猜想yn=3n-1(n∈N*,n≤2008). 证明:由框图,知数列yn中,yn+1=3yn+2, ∴yn+1+1=3(yn+1) ∴ ∴数列yn+1是以3为首项,3为公比的等比数列. ∴yn+1=3n, ∴yn=3n-1(n∈N*,n≤2008);(9分) (3)zn=x1y1+x2y2++xnyn=1×(3-1)+3×(32-1)+5×(33-1)++(2n-1)×(3n-1) =1×3+3×32+5×33++(2n-1)×3n-(1+3+5++2n-1) 记Sn=1×3+3×32+5×33++(2n-1)×3n① 则3Sn=1×32+3×33+5×34++(2n-1)×3n+1② ①-②,得-2Sn=3+2×32+2×33+2×34++2×3n-(2n-1)×3n+1 ∴Sn=(n-1)•3n+1+3, 又1+3+5++2n-1=n2 ∴zn=(n-1)•3n+1+3-n2(n∈N*,n≤2008).(14分)
复制答案
考点分析:
相关试题推荐
已知A(1,1)是椭圆manfen5.com 满分网=1(a>b>0)上一点,F1、F2是椭圆的两焦点,且满足|AF1|+|AF2|=4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点C、D是椭圆上两点,直线AC、AD的倾斜角互补,求直线CD的斜率.
查看答案
已知函数f(x)=-x2+ax+1-lnx.
(Ⅰ)当a=3时,求函数f(x)的单调递增区间;
(Ⅱ)若f(x)在区间(0,manfen5.com 满分网)上是减函数,求实数a的取值范围.
查看答案
如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1
(2)求二面角B-AC-A1的大小;
(3)求此几何体的体积.

manfen5.com 满分网 查看答案
已知复数z1=cosα+isinα,z2=cosβ+isinβ,manfen5.com 满分网
求:(1)求cos(α-β)的值;
(2)若manfen5.com 满分网,且manfen5.com 满分网,求sinα的值.
查看答案
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.
(Ⅰ)求取出的两个球上标号为相邻整数的概率;
(Ⅱ)求取出的两个球上标号之和能被3整除的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.