满分5 > 高中数学试题 >

现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄...

现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求A1被选中的概率;
(Ⅱ)求B1和C1不全被选中的概率.
(Ⅰ)先用列举法,求出从8人中选出日语、俄语和韩语志愿者各1名,所有一切可能的结果对应的基本事件总个数,再列出A1恰被选中这一事件对应的基本事件个数,然后代入古典概型公式,即可求解. (Ⅱ)我们可利用对立事件的减法公式进行求解,即求出“B1,C1不全被选中”的对立事件“B1,C1全被选中”的概率,然后代入对立事件概率减法公式,即可得到结果. 【解析】 (Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名, 其一切可能的结果组成的基本事件空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)} 由18个基本事件组成.由于每一个基本事件被抽取的机会均等, 因此这些基本事件的发生是等可能的. 用M表示“A1恰被选中”这一事件,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)} 事件M由6个基本事件组成,因而. (Ⅱ)用N表示“B1,C1不全被选中”这一事件, 则其对立事件表示“B1,C1全被选中”这一事件, 由于={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件有3个基本事件组成, 所以,由对立事件的概率公式得.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)将函数y=f(x)的图象向右平移manfen5.com 满分网个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案
设x,y满足约束条件manfen5.com 满分网则z=2x+y的最大值为     查看答案
已知f(3x)=4xlog23+233,则f(2)+f(4)+f(8)+…+f(28)的值等于    查看答案
manfen5.com 满分网执行下边的程序框图,若p=0.8,则输出的n=    查看答案
已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.