满分5 > 高中数学试题 >

袋里装由20个球,每个球上都记有1到20的一个号码,设号码为n的球重为f(n)=...

袋里装由20个球,每个球上都记有1到20的一个号码,设号码为n的球重为f(n)=manfen5.com 满分网(克),如果满足f(n)>n,则称该球为重球.这些球以等可能性(不受重量和号码的影响)从袋里取出.
(1)如果任意取出1球,试求该球为重球的概率;
(2)如果同时任意取出两个球,试求它们重量相等的概率.
(1)本题是一个古典概型,试验发生包含的事件是任取1个球,共有20个等可能的结果,满足条件f(n)>n,解关于n的一元二次不等式,得到n的范围,看出n的个数,得到概率. (2)本题是一个古典概型,试验发生包含的事件是任取两个球共有C202种等可能的取法,满足条件的事件是它们重量相等,写出关于n的方程,根据条件得到n之间的关系,得到符合条件的事件数,得到概率. 【解析】 (1)由题意知本题是一个古典概型, 试验发生包含的事件是任取1个球,共有20个等可能的结果, 由>n, 即n2-18n+45>0, ∴n<3或n>15. 因此球的重量大于其号码数的结果为7种, ∴概率为:. (2)由题意知本题是一个古典概型, 试验发生包含的事件是任取两个球共有C202=190种等可能的取法. f(n1)=f(n2)(n1≠n2), 则, 即. 因为n1≠n2, ∴n1+n2=15. 由此可见,任取2个球且重量相同的取法有7种, ∴所求概率为:.
复制答案
考点分析:
相关试题推荐
如图,己知正四棱棱柱AC1中,AB=BC=1,BB1=2,连接B1C和A1C
(1)在线段CC1上求一点E使得A1C⊥面BED(即求出CE的长);
(2)求点A到平面A1B1C的距离;
(3)求直线DE与平面A1B1C所成角的正弦值.

manfen5.com 满分网 查看答案
(文)manfen5.com 满分网+manfen5.com 满分网-2cosx.
(1)求f(x)的周期;
(2)若B为△ABC的内角且f(B)=2,求角B;
(3)若B为△ABC的内角且f(B)-m>2恒成立,求实数m取值范围.
查看答案
(理)已知向量manfen5.com 满分网=(1,1),向量manfen5.com 满分网和向量manfen5.com 满分网的夹角为manfen5.com 满分网,|manfen5.com 满分网|=manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=-1.
(1)求向量manfen5.com 满分网
(2)若向量manfen5.com 满分网与向量manfen5.com 满分网=(1,0)的夹角为manfen5.com 满分网,向量manfen5.com 满分网=(cosA,manfen5.com 满分网),其中A、B、C为△ABC的内角a、b、c为三边,b2+ac=a2+c2,求|manfen5.com 满分网+manfen5.com 满分网|的取值范围.
查看答案
给出下列命题:①数列{an}为等差数列的充要条件是其前n项和Sn=An2+Bn+C中的C=0(A、B、C为常数);②不等式f(x)>0的解的端点值是方程f(x)=0的根;③非p或q为真命题的充要条件是p且非q为假命题;④动点P到定点的距离与到定直线的距离之比为常数e,若e>1,则动点P的轨迹为双曲线,其中正确命题的序号有    查看答案
(文)f(x)=(2x+1)10,则f'(x)的展开式中的一次项系数为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.