满分5 > 高中数学试题 >

设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总...

设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”.那么,下列命题总成立的是( )
A.若f(1)<1成立,则f(10)<100成立
B.若f(2)<4成立,则f(1)≥1成立
C.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立
D.若f(4)≥25成立,则当k≥4时,均有f(k)≥k2成立
“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立”是一种递推关系,前一个数成立,后一个数一定成立,反之不一定成立. 【解析】 对A,因为“原命题成立,否命题不一定成立”,所以若f(1)<1成立,则不一定f(10)<100成立;对B,因为“原命题成立,则逆否命题一定成立”,所以只能得出:若f(2)<4成立,则f(1)<1成立,不能得出:若f(2)<4成立,则f(1)≥1成立;对C,当k=1或2时,不一定有f(k)≥k2成立;对D,∵f(4)≥25≥16,∴对于任意的k≥4,均有f(k)≥k2成立. 故选D
复制答案
考点分析:
相关试题推荐
用数学归纳法证明1+2+3+…+n2=manfen5.com 满分网,则当n=k+1时左端应在n=k的基础上加上( )
A.k2+1
B.(k+1)2
C.manfen5.com 满分网
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
查看答案
已知f(n)=manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网,则( )
A.f(n)中共有n项,当n=2时,f(2)=manfen5.com 满分网+manfen5.com 满分网
B.f(n)中共有n+1项,当n=2时,f(2)=manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网
C.f(n)中共有n2-n项,当n=2时,f(2)=manfen5.com 满分网+manfen5.com 满分网
D.f(n)中共有n2-n+1项,当n=2时,f(2)=manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网
查看答案
某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得( )
A.当n=6时,该命题不成立
B.当n=6时,该命题成立
C.当n=4时,该命题不成立
D.当n=4时,该命题成立
查看答案
两题任选一题:
(1)k是什么实数时,方程x2-(2k+3)x+3k2+1=0有实数根?
(2)设方程8x2-(8sinα)x+2+cos2α=0的两个根相等,求α.
查看答案
在平地上有A、B两点,A在山的正东,B在山的东南,且在A的西偏南65°距离为300米的地方,在A测得山顶的仰角是30°,求山高(精确到10米,sin70°=0.94).
manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.