满分5 > 高中数学试题 >

已知数列{an}的前n项为和Sn,点在直线上.数列{bn}满足bn+2-2bn+...

已知数列{an}的前n项为和Sn,点manfen5.com 满分网在直线manfen5.com 满分网上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和为153.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设manfen5.com 满分网,数列{cn}的前n和为Tn,求使不等式manfen5.com 满分网对一切n∈N*都成立的最大正整数k的值.
(Ⅲ)设manfen5.com 满分网是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.
(Ⅰ)把点点代入直线方程,进而求得,则Sn可得.进而根据an=Sn-Sn-1求得an.整理bn+2-2bn+1+bn=0得bn+2-bn+1=bn+1-bn,判断出{bn}为等差数列根据b3和b7求得公差,进而根据等差数列的通项公式求得bn. (Ⅱ)先用裂项法求得Tn,进而求得Tn-Tn-1>0,推知Tn单调递增,进而求得Tn的最小值,则k的范围可得. (Ⅲ)把(1)中求得的bn和an代入函数 解析式,分别看m为奇数和偶数时利用f(m+15)=5f(m)求得m,最后综合可得答案. 【解析】 (Ⅰ)由题意,得 故当n≥2时, 注意到n=1时,a1=S1=6,而当n=1时,n+5=6, 所以,an=n+5(n∈N*). 又bn+2-2bn+1+bn=0,即bn+2-bn+1=bn+1-bn(n∈N*), 所以{bn}为等差数列 于是 而 因此,bn=b3+3(n-3)=3n+2,即bn=3n+2(n∈N*). (Ⅱ)= 所以,= 由于, 因此Tn单调递增,故 令 (Ⅲ) ①当m为奇数时,m+15为偶数. 此时f(m+15)=3(m+15)+2=3m+47,5f(m)=5(m+5)=5m+25, 所以3m+47=5m+25,m=11. ②当m为偶数时,m+15为奇数. 此时f(m+15)=m+15+5=m+20,5f(m)=5(3m+2)=15m+10, 所以(舍去). 综上,存在唯一正整数m=11,使得f(m+15)=5f(m)成立.
复制答案
考点分析:
相关试题推荐
已知双曲线的中心在原点O,右焦点为F(c,0),P是双曲线右支上一点,且△OEP的面积为manfen5.com 满分网
(Ⅰ)若点P的坐标为manfen5.com 满分网,求此双曲线的离心率;
(Ⅱ)若manfen5.com 满分网,当manfen5.com 满分网取得最小值时,求此双曲线的方程.
查看答案
已知函数f(x)=x3+ax2+bx+c在x=1处有极值,f(x)在x=2处的切线l不过第四象限且倾斜角为manfen5.com 满分网,坐标原点到切线l的距离为manfen5.com 满分网
(Ⅰ)求a、b、c的值;
(Ⅱ)求函数manfen5.com 满分网上的最大值和最小值.
查看答案
如图,棱长为1的正四面体ABCD中,E、F分别是棱AD、CD的中点,O是点A在平面BCD内的射影.
(Ⅰ)求直线EF与直线BC所成角的大小;
(Ⅱ)求点O到平面ACD的距离;
(Ⅲ)求二面角E-BE-F的大小.

manfen5.com 满分网 查看答案
甲、乙两支篮球队进行比赛,已知每一场甲队获胜的概率为0.6,乙队获得的概率为0.4,每场比赛均要分出胜负,比赛时采用三场两胜制,即先取得两场胜利的球队胜出.
(Ⅰ)求甲队以二比一获胜的概率;
(Ⅱ)求乙队获胜的概率;
(Ⅲ)若比赛采用五场三胜制,试问甲获胜的概率是增大还是减小,请说明理由.
查看答案
已知向量manfen5.com 满分网=(cosx,sinx),manfen5.com 满分网=(-cosx,cosx),函数f(x)=2manfen5.com 满分网manfen5.com 满分网+1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[0,2π]时,求f(x)的单调减区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.