满分5 > 高中数学试题 >

设d为非零实数, (Ⅰ)写出a1,a2,a3并判断﹛an﹜是否为等比数列.若是,...

设d为非零实数,manfen5.com 满分网
(Ⅰ)写出a1,a2,a3并判断﹛an﹜是否为等比数列.若是,给出证明;若不是,说明理由;
(Ⅱ)设bn=ndan(n∈N*),求数列﹛bn﹜的前n项和Sn
本题考查的是数列求和问题,在解答时: (Ⅰ)根据条件直接代入n值计算即可获得a1、a2、a3的值.然后利用,当n≥2,k≥1时,,对数列通向进行化简可得an=d(d+1)n-1,进而分类讨论问题即可获得解答; (Ⅱ)由(Ⅰ)可知:an=d(d+1)n-1,进而可计算bn,结合bn的特点可利用成公比错位相减法进行求解,注意分类讨论即可获得问题的解答. 【解析】 (Ⅰ)由题意可知:a1=d,a2=d(1+d),a3=d(1+d)2, 当n≥2,k≥1时,, ∴ =d(Cn-1d+Cn-11d1+Cn-12d2+…+Cn-1n-1dn-1) =d(d+1)n-1. 所以,当d≠-1时,{an}是以d为首项,d+1为公比的等比数列. 当d=-1时,a1=-1,an=0(n≥2),此时{an}不是等比数列. (Ⅱ)由(Ⅰ)可知:an=d(d+1)n-1, ∴bn=nd2(d+1)n-1=d2n(d+1)n-1, ∴Sn=d2[1•(d+1)+2•(d+1)1+3•(d+1)2+…+(n-1)•(d+1)n-2+n•(d+1)n-1], 当d=-1时,Sn=d2=1 当d≠-1时, (d+1)Sn=d2[1•(d+1)1+2•(d+1)2+3•(d+1)3+…+(n-1)•(d+1)n-1+n•(d+1)n], ∴-dSn=d2[1+(d+1)+(d+1)2+(d+1)3+…+(d+1)n-1-n(d+1)n], ∴Sn=(d+1)n(nd-1)+1. 综上可知:Sn=(d+1)n(nd-1)+1,n∈N*.
复制答案
考点分析:
相关试题推荐
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,D是棱C C1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1
(Ⅰ)求证:CD=C1D;
(Ⅱ)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.

manfen5.com 满分网 查看答案
本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为manfen5.com 满分网manfen5.com 满分网;两小时以上且不超过三小时还车的概率分别是为为manfen5.com 满分网manfen5.com 满分网;两人租车时间都不会超过四小时.
(Ⅰ)求甲乙两人所付的租车费用相同的概率.
(Ⅱ)设甲乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望Eξ.
查看答案
已知函数f(x)=sin(x+manfen5.com 满分网)+cos(x-manfen5.com 满分网),x∈R
(Ⅰ)求f(x)的最小正周期和最小值;
(Ⅱ)已知cos(β-α)=manfen5.com 满分网,cos(β+α)=-manfen5.com 满分网.0<α<βmanfen5.com 满分网,求证:[f(β)]2-2=0.
查看答案
函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象;
④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.
其中的真命题是    .(写出所有真命题的编号) 查看答案
如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.