满分5 > 高中数学试题 >

如图,在正三棱柱ABC-A1B1C1中,BB1=BC=2,且M是BC的中点,点N...

如图,在正三棱柱ABC-A1B1C1中,BB1=BC=2,且M是BC的中点,点N在CC1上.
(1)试确定点N的位置,使AB1⊥MN;
(2)当AB1⊥MN时,求二面角M-AB1-N的大小.

manfen5.com 满分网
(1)由题意及平面ABC⊥平面BB1C1C且交线为BC,利用面面垂直的性质定理得AM⊥平面BB1C1C,进而得到线线线垂直,在Rt△B1BM与Rt△MCN中利用条件得到N为C1C四等分点(靠近点C); (2)由(1)的证明过程知道∠MEN为二面角M-AB1-N的平面角,然后利用三角形解出二面角的大小. 【解析】 (1)连接MA、B1M,过M作MN⊥B1M,且MN交CC1点N, 在正△ABC中,AM⊥BC, 又∵平面ABC⊥平面BB1C1C, 平面ABC∩平面BB1C1C=BC, ∴AM⊥平面BB1C1C, ∵MN⊂平面BB1C1C, ∴MN⊥AM. ∵AM∩B1M=M, ∴MN⊥平面AMB1,∴MN⊥AB1. ∵在Rt△B1BM与Rt△MCN中, 易知∠NMC=∠BB1M, ∴tan∠NMC=,∴NC=tan∠BB1M=, 即N为C1C四等分点(靠近点C). (2)过点M作ME⊥AB1,垂足为R,连接EN, 由(1)知MN⊥平面AMB1, ∴EN⊥AB1, ∴∠MEN为二面角M-AB1-N的平面角. ∵正三棱柱ABC-A1B1C1,BB1=BC=2, ∴AB1=2. 由AM⊥平面BC1,知AM⊥B1M. 在Rt△AMB1中,ME=, 又MN=, 故在Rt△EMN中,tan∠MEN=, 故二面角M-AB1-N的大小为arctan.
复制答案
考点分析:
相关试题推荐
在A、B两只口袋中均有2个红球和2个白球,先从A袋中任取2个球转放到B袋中,再从B袋中任取1个球转放到A袋中,结果A袋中恰有ξ个红球.
(1)求ξ=1时的概率;
(2)求随机变量ξ的分布列及期望.
查看答案
设函数f(x)=ln(2x+3)+x2
(1)讨论f(x)的单调性;
(2)求f(x)在区间[-manfen5.com 满分网manfen5.com 满分网]的最大值和最小值.
查看答案
在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.若C(x,y)到点A(1,3),B(6,9)的“直角距离”相等,其中实数x、y满足0≤x≤10,0≤y≤10,则所有满足条件点C的轨迹的长度之和为     查看答案
已知(n,an)(n∈N*)是直线y=2x+1上的一点,数列{bn}满足bn=manfen5.com 满分网,Sn是数列{bn}的前n项和,则S10=    查看答案
已知实数manfen5.com 满分网则该不等式组表示的平面图形的面积是    ;代数式(x-1)2+(y-2)2的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.