满分5 > 高中数学试题 >

已知椭圆C:的长轴长为,离心率. (1)求椭圆C的标准方程; (2)若过点B(2...

已知椭圆C:manfen5.com 满分网的长轴长为manfen5.com 满分网,离心率manfen5.com 满分网
(1)求椭圆C的标准方程;
(2)若过点B(2,0)的直线l(斜率不等于零)与椭圆C交于不同的两点E、F(E在B、F之间),且△OBE与△OBF的面积之比为manfen5.com 满分网,求直线l的方程.

manfen5.com 满分网
(1)设椭圆的标准方程,根据离心率求得a和c的关系,根据长轴长求得a,进而求得c,则b可求的,椭圆的方程可得. (2)设直线l方程,与椭圆方程联立消去x,根据判别式大于0气度而m的一个范围,设E(x1,y1),F(x2,y2)利用韦达定理可分别表示出y1y2和y1+y2,根据三角形面积之比求得由此可知,,即y2=2y1.代入y1y2和y1+y2中,进而求得m的范围. 【解析】 (1)椭圆C的方程为, 由已知得, 解得, ∴所求椭圆的方程为, (2)由题意知l的斜率存在且不为零, 设l方程为x=my+2(m≠0)①,代入,整理得(m2+2)y2+4my+2=0,由△>0得m2>2. 设E(x1,y1),F(x2,y2),则=2 ② 由已知,,则, 由此可知,,即y2=2y1. 代入 ②得,,消去y1得, 解得,,满足m2>2. 即. 所以,所求直线l的方程.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,其中a为大于零的常数.
(I)若曲线y=f(x)在点(1,f(1))处的切线与直线y=1-2x平行,求a的值;
(II)求函数f(x)在区间[1,2]上的最小值.
查看答案
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(I)证明:BN⊥平面C1B1N;
(II)求二面角C-NB1-C1的余弦值;M为AB中点,在线段CB上是否存在一点P,使得MP∥平面CNB1,若存在,求出BP的长;若不存在,请说明理由.
manfen5.com 满分网manfen5.com 满分网
查看答案
甲和乙参加智力答题活动,活动规则:①答题过程中,若答对则继续答题;若答错则停止答题;②每人最多答3个题;③答对第一题得10分,第二题得20分,第三题得30分,答错得0分.已知甲答对每个题的概率为manfen5.com 满分网,乙答对每个题的概率为manfen5.com 满分网
(I)求甲恰好得30分的概率;
(II)设乙的得分为ξ,求ξ的分布列和数学期望;
(III)求甲恰好比乙多30分的概率.
查看答案
设函数manfen5.com 满分网+sin2x.
(1)求函数f(x)的单调递增区间;
(2)设A,B,C为△ABC的三个内角,若AB=1,sinB=manfen5.com 满分网manfen5.com 满分网,求AC的长.
查看答案
定义运算符号:“manfen5.com 满分网”,这个符号表示若干个数相乘,例如:可将1×2×3×…×n记作manfen5.com 满分网,(n∈N*).记Tn=manfen5.com 满分网,其中ai为数列{an}(n∈N*)中的第i项.
①若an=3n-2,则T4=   
②若Tn=2n2(n∈N*),则an=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.