满分5 > 高中数学试题 >

已知椭圆的离心率为. (I)若原点到直线x+y-b=0的距离为,求椭圆的方程; ...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网
(I)若原点到直线x+y-b=0的距离为manfen5.com 满分网,求椭圆的方程;
(II)设过椭圆的右焦点且倾斜角为45°的直线l和椭圆交于A,B两点.
(i)当manfen5.com 满分网,求b的值;
(ii)对于椭圆上任一点M,若manfen5.com 满分网,求实数λ,μ满足的关系式.
(I)由题意知b=2,a2=12,b2=4.由此可知椭圆的方程为. (II)(i)由题意知椭圆的方程可化为:x2+3y2=3b2,AB:,所以.设A(x1,y1),B(x2,y2),,所以b=1. (II)(ii)显然与可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量,有且只有一对实数λ,μ,使得等成立.同上经可知λ2+μ2=1. 【解析】 (I)∵,∴∵,∴∵,∴解得a2=12,b2=4. 椭圆的方程为.(4分) (II)(i)∵,∴.椭圆的方程可化为:x2+3y2=3b2① 易知右焦点,据题意有AB:② 由①,②有:③ 设A(x1,y1),B(x2,y2),∴b=(18分) (II)(ii)显然与可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量,有且只有一对实数λ,μ,使得等成立. 设M(x,y),∵(x,y)=λ(x1,y1)+μ(x2,y2),∴x=λx1+μx2,y=λy1+μy2, 又点M在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2④ 由③有: 则3b2-9b2+6b2=0⑤ 又A,B在椭圆上,故有x12+3y12=3b2,x22+3y22=3b2⑥ 将⑥,⑤代入④可得:λ2+μ2=1.(14分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)若x=1为f(x)的极值点,求a的值;
(2)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,
(i)求f(x)在区间[-2,4]上的最大值;
(ii)求函数G(x)=[f'(x)+(m+2)x+m]e-x(m∈R)的单调区间.
查看答案
某公司要将一批海鲜用汽车运往A地,如果能按约定日期送到,则公司可获得销售收入30万元,每提前一天送到,可多获得1万元,每迟到一天送到,将少获得1万元.为保证海鲜新鲜,汽车只能在约定日期的前两天出发,且行驶路线只能选择公路1或公路2中的一条,运费由公司承担,其他信息如表所示.
manfen5.com 满分网
(Ⅰ)记汽车走公路1时公司获得的毛利润为ξ(万元),求ξ的分布列和数学期望Eξ;
(Ⅱ)假设你是公司的决策者,你选择哪条公路运送海鲜有可能获得的毛利润更多?
(注:毛利润=销售收入-运费).
查看答案
如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=AB=BC=manfen5.com 满分网AD.E为AB中点,F为PC中点.
(Ⅰ)求证:PE⊥BC;
(Ⅱ)求二面角C-PE-A的余弦值;
(Ⅲ)若四棱锥P-ABCD的体积为4,求AF的长.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(I)求函数f(x)的最小正周期及图象的对称轴方程;
(II)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.
查看答案
有下列命题:
①若f(x)存在导函数,则f′(2x)=[f(2x)]
②若函数h(x)=cos4x-sin4x,则manfen5.com 满分网
③若函数g(x)=(x-1)(x-2)…(x-2009)(x-2010),则g′(2010)=2009!.
④若三次函数f(x)=ax3+bx2+cx+d,则“a+b+c=0”是“f(x)有极值点”的充要条件.
其中真命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.