满分5 > 高中数学试题 >

已知a∈R,函数f(x)=x2-2alnx(其中x≥1),当a≤1时,求f(x)...

已知a∈R,函数f(x)=x2-2alnx(其中x≥1),当a≤1时,求f(x)的单调区间和最值.
先求函数f(x)的导函数,根据导函数在[1,+∞)导数符号判定函数的单调性,从而求出函数的最值. 【解析】 f'(x)=2x-=2• 若a≤1,x>1,则f′(x)>0, ∵f(x)在[1,+∞)上连续, ∴f(x)在[1,+∞)上是单调递增函数, ∴当a≤1,x≥1时,f(x)min=f(1)=1, ∴函数有最小值1,无最大值.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网=1(a>b>0)的离心率e=manfen5.com 满分网,左、右焦点分别为F1、F2,点manfen5.com 满分网,点F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,求证:直线l过定点,并求该定点的坐标.
查看答案
某运动员射击一次所得环数X的分布如下:
X78910
P0.20.30.30.2
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.
(Ⅰ)求该运动员两次都命中7环的概率;
(Ⅱ)求ξ的分布列和数学期望.
查看答案
(理科)如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
manfen5.com 满分网
(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.

(文科)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF.
manfen5.com 满分网
查看答案
设△ABC的三个内角A,B,C对边分别是a,b,c,已知manfen5.com 满分网
(1)求角B;
(2)若A是△ABC的最大内角,求manfen5.com 满分网的取值范围.
查看答案
如果直线y=kx+1与x2+y2+kx+my-4=0交于M、N两点,且M、N关于直线x+y=0对称,若P(a,b)为平面区域manfen5.com 满分网内任意一点,则manfen5.com 满分网的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.