满分5 > 高中数学试题 >

如图,直线相交于点P.直线l1与x轴交于点P1,过点P1作x轴的垂线交直线l2于...

如图,直线manfen5.com 满分网相交于点P.直线l1与x轴交于点P1,过点P1作x轴的垂线交直线l2于点Q1,过点Q1作y轴的垂线交直线l1于点P2,过点P2作x轴的垂线交直线l2于点Q2,…,这样一直作下去,可得到一系列点P1、Q1、P2、Q2,…,点Pn(n=1,2,…)的横坐标构成数列{xn}.
(Ⅰ)证明manfen5.com 满分网
(Ⅱ)求数列{xn}的通项公式;
(Ⅲ)比较2|PPn|2与4k2|PP1|2+5的大小.

manfen5.com 满分网
(I)由题意及各点的产生情况直线l1与x轴交于点P1,过点P1作x轴的垂线交直线l2于点Q1,过点Q1作y轴的垂线交直线l1于点P2,过点P2作x轴的垂线交直线l2于点Q2,…,这样一直作下去,可得到一系列点P1、Q1、P2、Q2,…,点Pn(n=1,2,…)的横坐标构成数列{xn},读懂它即可得证; (II)因为已知的直线l1方程且知直线l1与x轴交于点P1,可以求出点P1,在有(I)的证明结论可以得到数列{xn}的递推关系利用构造法求出其通项; (III)先由题意得到点P的坐标为(1,1),在有两点间的距离的公式得2|PPn|2的式子,有式子与4k2|PP1|2+5比较大小. 【解析】 (Ⅰ)证明:设点Pn的坐标是(xn,yn),由已知条件得 点Qn、Pn+1的坐标分别是:. 由Pn+1在直线l1上,得. 所以,即. (Ⅱ)由题设知,又由(Ⅰ)知, 所以数列{xn-1}是首项为x1-1,公比为的等比数列. 从而. (Ⅲ)【解析】 由得到点P的坐标为(1,1), 所以,. (i)当时,4k2|PP1|2+5>1+9=10. 而此时. (ii)当时,4k2|PP1|2+5<1+9=10. 而此时.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点.
(I)设点P分有向线段manfen5.com 满分网所成的比为λ,证明:manfen5.com 满分网
(Ⅱ)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
查看答案
已知函数f(x)=x2eax,其中a≤0,e为自然对数的底数.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)求函数f(x)在区间[0,1]上的最大值.
查看答案
manfen5.com 满分网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=manfen5.com 满分网,点E在PD上,且PE:ED=2:1.
(I)证明PA⊥平面ABCD;
(II)求以AC为棱,EAC与DAC为面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
查看答案
甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为manfen5.com 满分网,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为manfen5.com 满分网,甲、丙两台机床加工的零件都是一等品的概率为manfen5.com 满分网
(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;
(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.
查看答案
已知sin(manfen5.com 满分网+2α)•sin(manfen5.com 满分网-2α)=manfen5.com 满分网,α∈(manfen5.com 满分网manfen5.com 满分网),求2sin2α+tanα-cotα-1的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.