已知数列{a
n}是一个公差大于0的等差数列,且满足a
3a
6=55,a
2+a
7=16
(1)求数列{a
n}的通项公式;
(2)数列{a
n}和数列{b
n}满足等式a
n=
(n∈N
*),求数列{b
n}的前n项和S
n.
考点分析:
相关试题推荐
已知数列{a
n}的各项均为正数,S
n为其前n项和,且对任意的n∈N
+,有
.
(1)求数列{a
n}的通项公式;
(2)设
,求数列{b
n}的前n项和T
n.
查看答案
已知圆O:x
2+y
2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
查看答案
如图(1),在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别是线段PC、PD、BC的中点,现将△PDC沿CD折起,使平面PDC⊥平面ABCD,如图(2).
(1)求证:PA∥平面EFG.
(2)求二面角G-EF-C的大小.
(3)在线段PB上是否存在这样的点Q,使PC⊥平面ADQ,若存在,请指出它的位置;若不存在,请说明理由.
查看答案
如图,多面体ABCDE的一个面ABC内接于圆O,AB是圆O的直径,四边形BCDE为平行四边形,且CD⊥平面ABC.
(1)证明:BC⊥平面ACD;
(2)若AB=5,BC=4,
,求多面体ABCDE的体积.
查看答案
有人预测:在2010年的广州亚运会上,排球比赛的决赛将在中国队与日本队之间展开,据以往统计,中国队在每局比赛中胜日本队的概率为
,比赛采取五局三胜制,即谁先胜三局谁就获胜,并停止比赛.
(1)求中国队以3:1获胜的概率.
(2)设ξ表示比赛的局数,求ξ的分布列与数学期望.
查看答案