满分5 > 高中数学试题 >

已知函数f(x)=x2-4x+a+3,g(x)=mx+5-2m. (Ⅰ)若y=f...

已知函数f(x)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零点,求实数a的取值范围;
(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.
(1)y=f(x)在[-1,1]上单调递减函数,要存在零点只需f(1)≤0,f(-1)≥0即可 (2)存在性问题,只需函数y=f(x)的值域为函数y=g(x)的值域的子集即可. 【解析】 (Ⅰ):因为函数f(x)=x2-4x+a+3的对称轴是x=2, 所以f(x)在区间[-1,1]上是减函数, 因为函数在区间[-1,1]上存在零点, 则必有:即,解得-8≤a≤0, 故所求实数a的取值范围为[-8,0]. (Ⅱ)若对任意的x1∈[1,4],总存在x2∈[1,4], 使f(x1)=g(x2)成立,只需函数y=f(x)的值域为函数y=g(x)的值域的子集. f(x)=x2-4x+3,x∈[1,4]的值域为[-1,3],下求g(x)=mx+5-2m的值域. ①当m=0时,g(x)=5-2m为常数,不符合题意舍去; ②当m>0时,g(x)的值域为[5-m,5+2m],要使[-1,3]⊆[5-m,5+2m], 需,解得m≥6; ③当m<0时,g(x)的值域为[5+2m,5-m],要使[-1,3]⊆[5+2m,5-m], 需,解得m≤-3; 综上,m的取值范围为(-∞,-3]∪[6,+∞).
复制答案
考点分析:
相关试题推荐
平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(manfen5.com 满分网c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含c的式子表示);
(2)已知椭圆manfen5.com 满分网(其中a2-b2=c2)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.
查看答案
已知四棱锥P-ABCD的直观图(如图1)及左视图(如图2),底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,PA=PB.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)求异面直线PD与AB所成角的余弦值;
(Ⅲ)求平面PAB与平面PCD所成锐二面角的大小.

manfen5.com 满分网 查看答案
某地决定新建A,B,C三类工程,A,B,C三类工程所含项目的个数分别占总项目数的manfen5.com 满分网(总项目数足够多),现有3名工人独立地从中任选一个项目参与建设.
(Ⅰ)求他们选择的项目所属工程类别相同的概率;
(Ⅱ)记ξ为3人中选择的项目属于B类工程或C类工程的人数,求ξ的分布列及数学期望.
查看答案
在等差数列{an}中,a1=1,Sn为前n项和,且满足S2n-2Sn=n2,n∈N*
(1)求a2及{an}的通项公式;
(2)记manfen5.com 满分网,求{bn}的前n项和Tn
查看答案
现有5男5女共10个小孩设想做如下游戏:先让4个小孩(不全为男孩)等距离站在一个圆周的4个位置上,如果相邻两个小孩同为男孩或同为女孩,则在他(她)们中间站进一个男孩,否则站进一个女孩,然后让原来的4个小孩暂时退出,即算一次活动.这种活动按上述规则继续进行,直至圆周上所站的4个小孩都为男孩为止,则这样的活动最多可以进行    次. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.