满分5 > 高中数学试题 >

顶点在同一球面上的正四棱柱ABCD-A′B′C′D′中,AB=1,AA′=,则A...

顶点在同一球面上的正四棱柱ABCD-A′B′C′D′中,AB=1,AA′=manfen5.com 满分网,则A、C两点间的球面距离为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
因为四棱柱的顶点在球面上,正四棱柱的对角线为球的直径,又因为角AOC为直角,就可以求出AC的距离. 【解析】 正四棱柱的对角线为球的直径,由4R2=1+1+2=4得R=1,AC=, 所以∠AOC=(其中O为球心)A、C两点间的球面距离为, 故选B.
复制答案
考点分析:
相关试题推荐
A,B为球面上相异两点,则通过A,B所作的大圆个数为( )
A.1个
B.无数个
C.一个也没有
D.1个或无数个
查看答案
(Ⅰ)已知矩阵manfen5.com 满分网,△ABC的顶点为A(0,0),B(2,0),C(1,2),求△ABC在矩阵M-1的变换作用下所得△A′B′C′的面积.
(Ⅱ)极坐标的极点是直角坐标系原点,极轴为X轴正半轴,直线l的参数方程为manfen5.com 满分网
(t为参数).⊙O的极坐标方程为ρ=2,若直线l与⊙O相切,求实数x的值.
(Ⅲ)已知a,b,c∈R+,且manfen5.com 满分网,求a+2b+3c的最小值及取得最小值时a,b,c的值.
查看答案
已知函数f(x)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零点,求实数a的取值范围;
(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.
查看答案
平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(manfen5.com 满分网c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含c的式子表示);
(2)已知椭圆manfen5.com 满分网(其中a2-b2=c2)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.
查看答案
已知四棱锥P-ABCD的直观图(如图1)及左视图(如图2),底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,PA=PB.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)求异面直线PD与AB所成角的余弦值;
(Ⅲ)求平面PAB与平面PCD所成锐二面角的大小.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.