满分5 > 高中数学试题 >

在等差数列{an}中,若a1+a5+a9=4π,则tan(a2+a8)的值是( ...

在等差数列{an}中,若a1+a5+a9=4π,则tan(a2+a8)的值是( )
A.-manfen5.com 满分网
B.-1
C.-manfen5.com 满分网
D.manfen5.com 满分网
先根据等差数列等差中项的性质可得a1+a5+a9=3a5求得a5,进而根据a2+a8=2a5求得a2+a8的值,进而代入到tan(a2+a8)答案可得. 【解析】 根据等差数列等差中项的性质可得,a1+a5+a9=3a5=4π, 所以a5=, 又a2+a8=2a5=, 故tan(a2+a8)=tan=tan=-, 故选A.
复制答案
考点分析:
相关试题推荐
数列{an}中,an+1=an+2(n∈N*),则点A1(1,a1),A2(2,a2),…,An(n,an)分布在( )
A.直线上,且直线的斜率为-2
B.抛物线上,且抛物线的开口向下
C.直线上,且直线的斜率为2
D.抛物线上,且抛物线的开口向上
查看答案
已知f是直角坐标平面xOy到自身的一个映射,点P在映射f下的象为点Q,记作Q=f(P).设P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一个圆,使所有的点Pn(xn,yn)(n∈N*)都在这个圆内或圆上,那么称这个圆为点Pn(xn,yn)的一个收敛圆.特别地,当P1=f(P1)时,则称点P1为映射f下的不动点.若点P(x,y)在映射f下的象为点manfen5.com 满分网
(Ⅰ)求映射f下不动点的坐标;
(Ⅱ)若P1的坐标为(2,2),求证:点Pn(xn,yn)(n∈N*)存在一个半径为2的收敛圆.
查看答案
已知△AOB的顶点A在射线manfen5.com 满分网上,A,B两点关于x轴对称,O为坐标原点,且线段AB上有一点M满足|AM|•|MB|=3.当点A在l上移动时,记点M的轨迹为W.
(Ⅰ)求轨迹W的方程;
(Ⅱ)设P(-1,0),Q(2,0),求证:∠MQP=2∠MPQ.
查看答案
设a∈R,函数f(x)=manfen5.com 满分网
(Ⅰ)当a=2时,试确定函数f(x)的单调区间;
(Ⅱ)若对任何x∈R,且x≠0,都有f(x)>x-1,求a的取值范围.
查看答案
如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=1,AA1=2,D是AA1的中点.
(Ⅰ)求异面直线A1C1与B1D所成角的大小;
(Ⅱ)求二面角C-B1D-B的大小;
(Ⅲ)在B1C上是否存在一点E,使得DE∥平面ABC?若存在,求出manfen5.com 满分网的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.