满分5 > 高中数学试题 >

如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,...

manfen5.com 满分网如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=manfen5.com 满分网,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小.
(Ⅰ)设AC与BD交于点G,则在平面BDE中,可以先证明四边形AGEF为平行四边形⇒EG∥AF,就可证:AF∥平面BDE; (Ⅱ)先以C为原点,建立空间直角坐标系C-xyz.把对应各点坐标求出来,可以推出•=0和•=0,就可以得到CF⊥平面BDE (Ⅲ)先利用(Ⅱ)找到=(,,1),是平面BDE的一个法向量,再利用平面ABE的法向量•=0和•=0,求出平面ABE的法向量,就可以求出二面角A-BE-D的大小. 【解析】 证明:(I)设AC与BD交于点G, 因为EF∥AG,且EF=1,AG=AC=1, 所以四边形AGEF为平行四边形.所以AF∥EG. 因为EG⊂平面BDE,AF⊄平面BDE, 所以AF∥平面BDE. (II)因为正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC, 所以CE⊥平面ABCD. 如图,以C为原点,建立空间直角坐标系C-xyz. 则C(0,0,0),A(,,0),D(,0,0),E(0,0,1),F(,,1). 所以=(,,1),=(0,-,1),=(-,0,1). 所以•=0-1+1=0,•=-1+0+1=0. 所以CF⊥BE,CF⊥DE,所以CF⊥平面BDE (III)由(II)知,=(,,1),是平面BDE的一个法向量, 设平面ABE的法向量=(x,y,z),则•=0,•=0. 即 所以x=0,且z=y.令y=1,则z=.所以n=(),从而cos(,)= 因为二面角A-BE-D为锐角,所以二面角A-BE-D为.
复制答案
考点分析:
相关试题推荐
如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.
(1)求证:FH∥平面EDB;
(2)求证:AC⊥平面EDB;
(3)求二面角B-DE-C的大小.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,二面角α-l-β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是    查看答案
到两互相垂直的异面直线的距离相等的点( ).
A.只有1个
B.恰有3个
C.恰有4个
D.有无穷多个
查看答案
到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )
A.直线
B.椭圆
C.抛物线
D.双曲线
查看答案
已知三棱锥S-ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.