满分5 > 高中数学试题 >

已知集合U={1,2,3,4,5,6},A={2,3,4},B={4,5,6},...

已知集合U={1,2,3,4,5,6},A={2,3,4},B={4,5,6},则A∩(CUB)=______
欲求两个集合的交集,先得求集合CUB,为了求集合CUB,必须考虑全集U,再根据补集的定义求解即可. 【解析】 ∵CUB={1,2,3}, ∴A∩(CUB)={2,3}. 故填:{2,3}.
复制答案
考点分析:
相关试题推荐
如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径.
(1)证明:平面A1ACC1⊥平面B1BCC1
(2)设AB=AA1,在圆柱OO1内随机选取一点,记该点取自于三棱柱ABC-A1B1C1内的概率为P.当点C在圆周上运动时,记平面A1ACC1与平面B1OC所成的角为θ(0°<θ≤90°),当P取最大值时,求cosθ的值.

manfen5.com 满分网 查看答案
如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB=manfen5.com 满分网,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=manfen5.com 满分网,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小.
查看答案
如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.
(1)求证:FH∥平面EDB;
(2)求证:AC⊥平面EDB;
(3)求二面角B-DE-C的大小.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,二面角α-l-β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.