满分5 > 高中数学试题 >

如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平...

如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2manfen5.com 满分网
(1)求直线AM与平面BCD所成的角的大小;
(2)求平面ACM与平面BCD所成的二面角的正弦值.

manfen5.com 满分网
(1)取CD中点O,连OB,OM,延长AM、BO相交于E,根据线面所成角的定义可知∠AEB就是AM与平面BCD所成的角,在三角形AEB中求出此角即可; (2)CE是平面ACM与平面BCD的交线,作BF⊥EC于F,连AF,根据二面角的平面角的定义可知∠AFB就是二面角A-EC-B的平面角,在三角形AFB中求出此角的正弦值,从而求出二面角的正弦值. 【解析】 (1)取CD中点O,连OB,OM,则OB⊥CD,OM⊥CD. 又平面MCD⊥平面BCD,则MO⊥平面BCD, 所以MO∥AB,A、B、O、M共面.延长AM、BO相交于E, 则∠AEB就是AM与平面BCD所成的角. OB=MO=,MO∥AB,则,,所以,故∠AEB=45°. (2)CE是平面ACM与平面BCD的交线. 由(1)知,O是BE的中点,则BCED是菱形. 作BF⊥EC于F,连AF,则AF⊥EC,∠AFB就是二面角A-EC-B的平面角, 设为θ. 因为∠BCE=120°,所以∠BCF=60°. . 所以,所求二面角的正弦值是.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
查看答案
如图,PE是⊙O的切线,E为切点,PAB、PCD是割线,AB=35,CD=50,AC:DB=1:2,则PA=______

manfen5.com 满分网 查看答案
如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;
(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.

manfen5.com 满分网 查看答案
如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1
(Ⅰ)设为P为AC的中点,Q为AB上一点,使PQ⊥OA,并计算manfen5.com 满分网的值;
(Ⅱ)求二面角O-AC-B的平面角的余弦值.

manfen5.com 满分网 查看答案
如图,弧AEC是半径为a的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC⊥平面BED,FB=manfen5.com 满分网a
(1)证明:EB⊥FD
(2)求点B到平面FED的距离.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.