满分5 > 高中数学试题 >

如图,在五棱锥P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,A...

如图,在五棱锥P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2manfen5.com 满分网,BC=2AE=4,三角形PAB是等腰三角形.
(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求直线PB与平面PCD所成角的大小;
(Ⅲ)求四棱锥P-ACDE的体积.

manfen5.com 满分网
(Ⅰ)要证平面PCD⊥平面PAC,只需证明平面PCD内的直线CD,垂直平面PAC内的两条相交直线PA、AC即可; (Ⅱ)过点A作AH⊥PC于H,说明∠PBO为所求角,然后解三角形求直线PB与平面PCD所成角的大小,也可以利用空间直角坐标系,求出向量,平面PCD的一个法向量,计算,即可. (Ⅲ)直接求出底面面积和高,再求四棱锥P-ACDE的体积. 【解析】 (Ⅰ)证明:因为∠ABC=45°,AB=2,BC=4, 所以在△ABC中,由余弦定理得:,解得, 所以AB2+AC2=8+8=16=BC2,即AB⊥AC, 又PA⊥平面ABCDE,所以PA⊥AB, 又PA∩AC=A,所以AB⊥平面PAC,又AB∥CD,所以CD⊥平面PAC, 又因为CD⊂平面PCD,所以平面PCD⊥平面PAC; (Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC, 所以在平面PAC内,过点A作AH⊥PC于H, 则AH⊥平面PCD,又AB∥CD,AB⊄平面PCD内,所以AB平行于平面PCD, 所以点A到平面PCD的距离等于点B到平面PCD的距离,过点B作BO⊥平面PCD于点O, 则∠BPO为所求角,且AH=BO,又容易求得AH=2, 所以,即∠BPO=30°, 所以直线PB与平面PCD所成角的大小为30°; 另【解析】 (Ⅱ)因为△PAB为等腰三角形,所以 又AB∥CD,所以点B到平面PCD的距离等于点A到平面PCD的距离. 由CD⊥平面PAC,在Rt△PAC中,,所以PC=4. 故PC边上的高为2,即点A到平面的距离,即点点B到平面PCD的距离为2. 设直线PB与平面PCD所成的角为θ,则, 又,所以. (Ⅱ)由(Ⅰ)知AB,AC,AP两两互相垂直, 分别以AB,AC,AP为x,y,z轴建立如图所示的空间直角坐标系, 由△PAB为等腰直角三角形,所以, 而,则 因为AC∥ED,CD⊥AC,所以四边形ACDE是直角梯形. 因为AE=2,∠ABC=45°,AE∥BC,所以∠BAE=135°,∠CAE=45°, 故,所以. 因此,设是平面PCD的一个法向量, 则,解得x=0,y=z.取y=1,得, 而. 设θ表示向量与平面PCD的法向量所成的角,则 因此直线PB与平面PCD所成角的大小为; (Ⅲ)由(Ⅰ)知CD⊥平面PAC,所以CD⊥AC,又AC∥ED,所以四边形ACDE是直角梯形,又容易求得,AC=,所以四边形ACDE的面积为,所以四棱锥P-ACDE的体积为=.
复制答案
考点分析:
相关试题推荐
如图,直三棱柱ABC-A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1
(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;
(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1-AC1-B1的大小.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.
(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)若manfen5.com 满分网,∠APB=∠ADB=60°,求四棱锥P-ABCD的体积.
查看答案
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点
(1)证明:PE⊥BC
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值

manfen5.com 满分网 查看答案
如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B
(Ⅰ)证明:平面AB1C⊥平面A1BC1
(Ⅱ)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.