满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB...

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2manfen5.com 满分网,E,F分别是AD,PC的中点,证明:PC⊥平面BEF.

manfen5.com 满分网
以A为坐标原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,欲证PC⊥平面BEF,根据直线与平面垂直的判定定理可知只需证PC与平面BEF内两相交直线垂直,而利用空间向量可求得PC⊥BF,PC⊥EF,BF∩EF=F,满足定理条件. 【解析】 以A为坐标原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系. ∵AP=AB=2,BC=AD=2,四边形ABCD是矩形. ∴A,B,C,D的坐标为A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2) 又E,F分别是AD,PC的中点, ∴E(0,,0),F(1,,1). ∴=(2,2,-2),=(-1,,1),=(1,0,1), ∴•=-2+4-2=0,•=2+0-2=0, ∴⊥,⊥, ∴PC⊥BF,PC⊥EF,BF∩EF=F, ∴PC⊥平面BEF
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(Ⅰ)求证:平面EFG⊥平面PDC;
(Ⅱ)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.
查看答案
如图,在五棱锥P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2manfen5.com 满分网,BC=2AE=4,三角形PAB是等腰三角形.
(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求直线PB与平面PCD所成角的大小;
(Ⅲ)求四棱锥P-ACDE的体积.

manfen5.com 满分网 查看答案
如图,直三棱柱ABC-A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1
(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;
(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1-AC1-B1的大小.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.
(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)若manfen5.com 满分网,∠APB=∠ADB=60°,求四棱锥P-ABCD的体积.
查看答案
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点
(1)证明:PE⊥BC
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.