如图,在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=
FD=4.沿直线EF将△AEF翻折成△A′EF,使平面A′EF⊥平面BEF.
(Ⅰ)求二面角A′-FD-C的余弦值;
(Ⅱ)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与A′重合,求线段FM的长.
考点分析:
相关试题推荐
如图,在五面体EF-ABCD中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=l,AD=2
,∠BAD=∠CDA=45°.
①求异面直线CE与AF所成角的余弦值;
②证明:CD⊥平面ABF;
③求二面角B-EF-A的正切值.
查看答案
如图,在长方体ABCD-A
1B
1C
1D
1中,E、F分别是棱BC,CC
1上的点,CF=AB=2CE,AB:AD:AA
1=1:2:4,
(1)求异面直线EF与A
1D所成角的余弦值;
(2)证明AF⊥平面A
1ED;
(3)求二面角A
1-ED-F的正弦值.
查看答案
在正方体ABCD-A′B′C′D′中,点M是棱AA′的中点,点O是对角线BD′的中点.
(Ⅰ)求证:OM为异面直线AA′和BD′的公垂线;
(Ⅱ)求二面角M-BC′-B′的大小.
查看答案
已知正方体ABCD-A′B′C′D′的棱长为1,点M是棱AA′的中点,点O是对角线BD′的中点.
(Ⅰ)求证:OM为异面直线AA′和BD′的公垂线;
(Ⅱ)求二面角M-BC′-B′的大小;
(Ⅲ)求三棱锥M-OBC的体积.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求三棱锥E-ABC的体积V.
查看答案