满分5 > 高中数学试题 >

如图,在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=FD=...

如图,在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=manfen5.com 满分网FD=4.沿直线EF将△AEF翻折成△A′EF,使平面A′EF⊥平面BEF.
(Ⅰ)求二面角A′-FD-C的余弦值;
(Ⅱ)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与A′重合,求线段FM的长.

manfen5.com 满分网
本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同事考查空间想象能力和运算求解能力. (1)取线段EF的中点H,连接A′H,因为A′E=A′F及H是EF的中点,所以A′H⊥EF,又因为平面A′EF⊥平面BEF.则我们可以以A的原点,以AE,AF,及平面ABCD的法向量为坐标轴,建立空间直角坐标系A-xyz,则锐二面角A′-FD-C的余弦值等于平面A′FD的法向量,与平面BEF的一个法向量夹角余弦值的绝对值. (2)设FM=x,则M(4+x,0,0),因为翻折后,C与A重合,所以CM=A′M,根据空间两点之间距离公式,构造关于x的方程,解方程即可得到FM的长. 【解析】 (Ⅰ)取线段EF的中点H,连接A′H,因为A′E=A′F及H是EF的中点,所以A′H⊥EF, 又因为平面A′EF⊥平面BEF. 如图建立空间直角坐标系A-xyz 则A′(2,2,),C(10,8,0), F(4,0,0),D(10,0,0). 故=(-2,2,2),=(6,0,0). 设=(x,y,z)为平面A′FD的一个法向量, -2x+2y+2z=0 所以6x=0. 取,则. 又平面BEF的一个法向量, 故. 所以二面角的余弦值为 (Ⅱ)设FM=x,则M(4+x,0,0), 因为翻折后,C与A重合,所以CM=A′M, 故,,得, 经检验,此时点N在线段BC上, 所以. 方法二: (Ⅰ)【解析】 取线段EF的中点H,AF的中点G,连接A′G,A′H,GH. 因为A′E=A′F及H是EF的中点, 所以A′H⊥EF 又因为平面A′EF⊥平面BEF, 所以A′H⊥平面BEF, 又AF⊂平面BEF, 故A′H⊥AF, 又因为G、H是AF、EF的中点, 易知GH∥AB, 所以GH⊥AF, 于是AF⊥面A′GH, 所以∠A′GH为二面角A′-DH-C的平面角, 在Rt△A′GH中,A′H=,GH=2,A'G= 所以. 故二面角A′-DF-C的余弦值为. (Ⅱ)【解析】 设FM=x, 因为翻折后,C与A′重合, 所以CM=A′M, 而CM2=DC2+DM2=82+(6-x)2, A′M2=A′H2+MH2=A′H2+MG2+GH2=+(2+x)2+22, 故 得, 经检验,此时点N在线段BC上, 所以.
复制答案
考点分析:
相关试题推荐
如图,在五面体EF-ABCD中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=l,AD=2manfen5.com 满分网,∠BAD=∠CDA=45°.
①求异面直线CE与AF所成角的余弦值;
②证明:CD⊥平面ABF;
③求二面角B-EF-A的正切值.

manfen5.com 满分网 查看答案
如图,在长方体ABCD-A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,
(1)求异面直线EF与A1D所成角的余弦值;
(2)证明AF⊥平面A1ED;
(3)求二面角A1-ED-F的正弦值.

manfen5.com 满分网 查看答案
在正方体ABCD-A′B′C′D′中,点M是棱AA′的中点,点O是对角线BD′的中点.
(Ⅰ)求证:OM为异面直线AA′和BD′的公垂线;
(Ⅱ)求二面角M-BC′-B′的大小.

manfen5.com 满分网 查看答案
已知正方体ABCD-A′B′C′D′的棱长为1,点M是棱AA′的中点,点O是对角线BD′的中点.
(Ⅰ)求证:OM为异面直线AA′和BD′的公垂线;
(Ⅱ)求二面角M-BC′-B′的大小;
(Ⅲ)求三棱锥M-OBC的体积.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求三棱锥E-ABC的体积V.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.