满分5 > 高中数学试题 >

如图,点P是双曲线C1:和圆C2:x2+y2=a2+b2的一个交点,Q是圆C2在...

如图,点P是双曲线C1manfen5.com 满分网和圆C2:x2+y2=a2+b2的一个交点,Q是圆C2在x轴下方的一点,且∠F1QP=60o,其中F1、F2是双曲线C1的两个焦点,则双曲线C1的离心率为   
manfen5.com 满分网
由题意可得,三角形F1F2P是有一个内角为60°角的直角三角形,根据此直角三角形,结合双曲线的离心率的定义即可求得双曲线C1的离心率. 【解析】 由题意可得,三角形F1F2P是有一个内角为60°角的直角三角形, ∵在此直角三角形中,∠P=90°,∠F2=60° ∴双曲线C1的离心率==, 故填:.
复制答案
考点分析:
相关试题推荐
不等式manfen5.com 满分网的解集为     查看答案
设椭圆manfen5.com 满分网=1(a>0,b>0)的离心率e=manfen5.com 满分网,右焦点F(c,0),方程ax2+bx-c=0的两个根分别为x1,x2,则点P(x1,x2)在( )
A.圆x2+y2=2内
B.圆x2+y2=2上
C.圆x2+y2=2外
D.以上三种情况都有可能
查看答案
已知函数manfen5.com 满分网,若x是函数y=f(x)的零点,且0<x1<x,则f(x1)( )
A.恒为正值
B.等于0
C.恒为负值
D.不大于0
查看答案
如图⊙O内切于△ABC,切点分别为D、E、F;若∠ABC=40°,∠ACB=60°,连接OE、OF,则∠EOF为( )
manfen5.com 满分网
A.30°
B.45°
C.100°
D.90°
查看答案
平面α、β、γ两两互相垂直,点A∈α,点A到β、γ的距离都是3,P是α上的动点,P到β的距离是到点A距离的2倍,则点P的轨迹上的点到γ的距离的最小值是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.