满分5 > 高中数学试题 >

如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于...

如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=manfen5.com 满分网,BC=1,求⊙O的半径.
manfen5.com 满分网
(1)要证PB是⊙O的切线,只要连接OB,求证∠OBP=90°即可; (2)连接OP,交AB于点D,求半径时,可以证明△APO∽△DPA,还可证明△PAO∽△ABC,在Rt△OAP中利用勾股定理. 证明:(1)连接OB, ∵OA=OB, ∴∠OAB=∠OBA, ∵PA=PB, ∴∠PAB=∠PBA, ∴∠OAB+∠PAB=∠OBA+∠PBA, ∴∠PAO=∠PBO.(2分) 又∵PA是⊙O的切线, ∴∠PAO=90°, ∴∠PBO=90°, ∴OB⊥PB.(4分) 又∵OB是⊙O半径, ∴PB是⊙O的切线,(5分) (2)【解析】 连接OP,交AB于点D, ∵PA=PB, ∴点P在线段AB的垂直平分线上. ∵OA=OB, ∴点O在线段AB的垂直平分线上, ∴OP垂直平分线段AB,(7分) ∴∠PAO=∠PDA=90°. 又∵∠APO=∠DPA, ∴△APO∽△DPA, ∴, ∴AP2=PO•DP. 又∵OD=BC=, ∴PO(PO-OD)=AP2, 即:PO2-PO=, 解得PO=2,(9分) 在Rt△APO中,,即⊙O的半径为1.(10分)
复制答案
考点分析:
相关试题推荐
湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下一个直径为12cm,深为2cm的空穴,则该球的半径为    cm,表面积是    查看答案
如图,点P是双曲线C1manfen5.com 满分网和圆C2:x2+y2=a2+b2的一个交点,Q是圆C2在x轴下方的一点,且∠F1QP=60o,其中F1、F2是双曲线C1的两个焦点,则双曲线C1的离心率为   
manfen5.com 满分网 查看答案
不等式manfen5.com 满分网的解集为     查看答案
设椭圆manfen5.com 满分网=1(a>0,b>0)的离心率e=manfen5.com 满分网,右焦点F(c,0),方程ax2+bx-c=0的两个根分别为x1,x2,则点P(x1,x2)在( )
A.圆x2+y2=2内
B.圆x2+y2=2上
C.圆x2+y2=2外
D.以上三种情况都有可能
查看答案
已知函数manfen5.com 满分网,若x是函数y=f(x)的零点,且0<x1<x,则f(x1)( )
A.恒为正值
B.等于0
C.恒为负值
D.不大于0
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.