满分5 > 高中数学试题 >

已知ABCD-A1B1C1D1是底面边长为1的正四棱柱,O1为A1C1与B1D1...

已知ABCD-A1B1C1D1是底面边长为1的正四棱柱,O1为A1C1与B1D1的交点.
(1)设AB1与底面A1B1C1D1所成角的大小为α,二面角A-B1D1-A1的大小为β.求证:manfen5.com 满分网
(2)若点C到平面AB1D1的距离为manfen5.com 满分网,求正四棱柱ABCD-A1B1C1D1的高.

manfen5.com 满分网
(1)此题由题意画出图形因为ABCD-A1B1C1D1是底面边长为1的正四棱柱,O1为A1C1与B1D1的交点,且设AB1与底面A1B1C1D1所成角的大小为α,二面角A-B1D1-A1的大小为β,所以应先利用线面角及二面角的定义求出α,β,即可得证; (2)由图形借助面面垂直找到点C在平面AB1D1的位置,利用三角形的相似解出. 【解析】 (1)由题意画出图形为: ∵ABCD-A1B1C1D1是底面边长为1的正四棱柱, ∴底面为正方形且边长为1,又因为AB1与底面A1B1C1D1所成角的大小为α,∴, 又因为二面角A-B1D1-A1的大小为β,且底面边长为1的正四棱柱,O1为A1C1与B1D1的交点,∴∠AO1A1=β,∴  而底面A1B1C1D1为边长为1的正方形,∴,∴. (2)∵O1为B1D1的中点,而△AB1D1是以B1D1为底边的等腰三角形,∴AO1⊥B1D1∴B1D1⊥平面ACC1A1∴平面AB1D1⊥平面ACC1A1 且交线为AO1,∴点C到平面AB1D1的投影点必落在A01上即垂足H,在矩形AA1C1C中,利用Rt△AA1O1∽Rt△CHA 得到,而,∴⇔⇒AA1=2, 故正四棱锥的高为AA1=2.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=a•2x+b•3x,其中常数a,b 满足a•b≠0
(1)若a•b>0,判断函数f(x) 的单调性;
(2)若a•b<0,求f(x+1)>f(x) 时的x 的取值范围.
查看答案
已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2
查看答案
设{an}是各项为正数的无穷数列,Ai是边长为ai,ai+1的矩形的面积(i=1,2,…),则{An}为等比数列的充要条件是( )
A.{an}是等比数列
B.a1,a3,…,a2n-1,…或a2,a4,…,a2n,…是等比数列
C.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列
D.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列,且公比相同
查看答案
设A1,A2,A3,A4,A5是平面上给定的5个不同点,则使manfen5.com 满分网=manfen5.com 满分网成立的点M的个数为( )
A.0
B.1
C.5
D.10
查看答案
下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( )
A.manfen5.com 满分网
B.y=x3
C.y=2|x|
D.y=cos
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.