满分5 > 高中数学试题 >

已知数列{an}和{bn}的通项公式分别为an=3n+6,bn=2n+7(n∈N...

已知数列{an}和{bn}的通项公式分别为an=3n+6,bn=2n+7(n∈N*).将集合{x|x=an,n∈N*}∪{x|x=bn,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,cn,…
(1)写出c1,c2,c3,c4
(2)求证:在数列{cn}中,但不在数列{bn}中的项恰为a2,a4,…,a2n,…;
(3)求数列{cn}的通项公式.
(1)利用两个数列的通项公式求出前3项,按从小到大挑出4项. (2)对于数列{an},对n从奇数与偶数进行分类讨论,判断是否能写成2n+7的形式. (3)对{an}中的n从从奇数与偶数进行分类讨论,对{bn}中的n从被3除的情况分类讨论,判断项的大小,求出数列的通项. 【解析】 (1)a1=3×1+6=9;     a2=3×2+6=12              a3=3×3+6=15 b1=2×1+7=9               b2=2×2+7=11             b3=2×3+7=13  ∴c1=9;c2=11;c3=12;c4=13 (2)解对于an=3n+6, 当n为奇数时,设为n=2k+1 则3n+6=2(3k+1)+7∈{bn} 当n为偶数时,设n=2k则3n+6=6k-1+7不属于{bn} ∴在数列{cn}中,但不在数列{bn}中的项恰为a2,a4,…,a2n,…; (3)b3k-2=2(3k-2)+7=a2k-1 b3k-1=6k+5  a2k=6k+6 b3k=6k+7 ∵6k+3<6k+5<6k+6<6k+7 ∴当k=1时,依次有b1=a1=c1,b2=c2,a2=c3,b3=c4… ∴
复制答案
考点分析:
相关试题推荐
已知ABCD-A1B1C1D1是底面边长为1的正四棱柱,O1为A1C1与B1D1的交点.
(1)设AB1与底面A1B1C1D1所成角的大小为α,二面角A-B1D1-A1的大小为β.求证:manfen5.com 满分网
(2)若点C到平面AB1D1的距离为manfen5.com 满分网,求正四棱柱ABCD-A1B1C1D1的高.

manfen5.com 满分网 查看答案
已知函数f(x)=a•2x+b•3x,其中常数a,b 满足a•b≠0
(1)若a•b>0,判断函数f(x) 的单调性;
(2)若a•b<0,求f(x+1)>f(x) 时的x 的取值范围.
查看答案
已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2
查看答案
设{an}是各项为正数的无穷数列,Ai是边长为ai,ai+1的矩形的面积(i=1,2,…),则{An}为等比数列的充要条件是( )
A.{an}是等比数列
B.a1,a3,…,a2n-1,…或a2,a4,…,a2n,…是等比数列
C.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列
D.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列,且公比相同
查看答案
设A1,A2,A3,A4,A5是平面上给定的5个不同点,则使manfen5.com 满分网=manfen5.com 满分网成立的点M的个数为( )
A.0
B.1
C.5
D.10
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.